Pre-Clinical Imaging
Our Vision
To achieve non-invasive insights into tissue physiology and pathophysiology which characterize disease progression and facilitate development of effective therapy approaches. To enhance the capabilities of integrated multi-modality imaging to provide robust predictive imaging biomarkers.
Our Mission
To develop and evaluate effective imaging strategies to achieve useful insights into disease development and response to therapy. To optimize methods based on state of the art technologies to effectively reveal non-invasively anatomy, tissue structure, and pathophysiology in diverse models of disease.
About Us
We are an interdisciplinary team of investigators that has extensive experience in small animal imaging and optimal use of advanced imaging technologies. Expertise in chemistry, physics, imaging science and disease models allows us to develop new reporter molecules, imaging paradigms and novel analytical methods. Through collaborations we are able to promote effective and efficient investions of diverse diseases in terms of progression and response to therapy.
Faculty & Staff

Matthew Lewis, Ph.D.
Assistant Professor

Li Liu, Ph.D.
Associate Professor

Jacques Lux, Ph.D.
Assistant Professor
Research Lab

Orhan Öz, M.D., Ph.D.
Professor
Program Director, Nuclear Medicine Residency
Research Lab

Xiankai Sun, Ph.D.
Professor
Director, Cyclotron & Radiochemistry Program
Research Lab
Research Projects
Development of Novel Contrasts Agents and Non-invasive Imaging Biomarkers

A vast array of potential reporter molecules exists based on many diverse imaging modalities: we have investigated methods of assessing pO2 and/or hypoxia, pH and specific enzyme activity (β-galactosidase). Exogenous reporter molecules may offer very specific insight into tissue properties, while interrogation of endogenous signal can be entirely non-invasive. For example, oxygen can serve as an effective theranostic: an oxygen gas breathing challenge can indicate levels of hypoxia based on BOLD/TOLD MRI or MSOT and potentially modify level of oxygenation to enhance treatment response.
Hypoxia - Characterization and Exploitation

An adequate supply of oxygen is vital to tissue health; notably ischemia leading to hypoxia is the central cause of damage in myocardial inaction, stroke and peripheral artery disease. Meanwhile hypoxia tumors are known to be more aggressive and resists therapy, particularly radiation. Thus, we are interested in developing effective biomarkers of hypoxia and tailoring therapy to the oxygen status of tissues.
Peripheral Artery Disease

Peripheral arterial disease (PAD) is a severe impairment of arterial vessels resulting in obstruction of normal blood flow in the legs, leading to acute and/or chronic lower limb ischemia, and subsequently high morbidity and mortality rates. In collaboration with teams at UT Arlington (Nguyen) and Penn State (Yang) our long-term goal is to develop novel degradable dual-modal imaging nanoparticles (DINPs) to specifically deliver therapeutic reagents that provide cell protection and facilitate formation of blood vessels de novo at ischemic sites, while allowing detection of the NP location and monitoring of their therapeutic effectiveness for PAD treatment. The polymer scaffold material is new, and it provides both fluorescent and deep tissue photoacoustic imaging opportunities to detect the in vivo distribution of these NPs and to allow their therapeutic assessment. MSOT also reveals tissue vascular oxygenation.
Evaluation of Novel Therapeutics and Treatment Strategies

Vasculature is particularly amenable to selective treatment being readily accessible to systemic drugs. In some cases it exhibits rapid acute response to intervention, which may be observed using diverse imaging technologies. In long term collaboration, we have been evaluating novel vascular disrupting agents being developed by Professors Pinney d Trawick of Baylor University. A recent collaboration with Professor Zhang of UTD evaluate novel heme targeting agents. Imaging is particularly effective at assessing dynamic changes which may be pertinent to combined therapy, e.g., optical timing and dosing of chemotherapy plus radiation therapy.
Technology Development

As new technologies become available with novel instruments, reporter agents and processing algorithms we seek to enhance the data content and accessibility. Image quality is particularly susceptible to motion and may be enhanced through various techniques such as accelerated acquisitions, co-registration and filtering.
Associated Cores
Research in Radiology relies on state-of-the-art technology and expertise to optimize the performance of such equipment, provide quality control, and generate robust research data. Our cores offer services by modern instruments operated by highly trained Radiology personnel.
Jump to …
Advanced Imaging Research Center
The AIRC is a collaboration between UT Southwestern Medical Center and other North Texas institutions to further research in magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS), and translation of discoveries into clinical practice. The Center's research seeks to advance basic understanding, diagnostic techniques, and treatments for a wide range of diseases, including cancer, diabetes, obesity, Alzheimer's disease, schizophrenia, depression, autism, attention-deficit hyperactive disorder (ADHD), and diseases of the heart, lung, and liver.
Cyclotron & Radiochemistry

The Cyclotron and Radiochemistry Program is a UT Southwestern Medical Center-wide effort to develop the full capability of nuclear imaging, namely radioisotope-based imaging, for noninvasive assessment of physiological processes and abnormalities in animal models and in humans.
With a biomedical cyclotron and the capability to synthesize a variety of biomedical radioisotopes, this program leverages the cutting-edge technology of positron-emission tomography (PET) to enable discoveries that span multiple areas of medicine and physiology.
Visit the Cyclotron and Radiochemistry Program's website.
Small Animal Imaging Resource (SAIR)
- SAIR is an institutional facility that promotes and facilitates small animal imaging related to models of human disease with state-of-the-art equipment including depth resolved or planar optical imaging (fluorescence (FLI), bioluminescence (BLI) and chemiluminescence (CLI)), MRI, ultrasound, photoacoustic tomography, PET/CT, SPECT/CT and planar scintigraphy
- Infrastructure for animal handling (e.g., anesthesia, infusion, monitoring vital signs)
- Experienced investigators and technical staff capable of undertaking imaging and assisting in data interpretation are associated with the Resource and provide consultation on experimental planning, analysis and validation, and data archiving.
- Expertise in pulse programming and implementation for novel MRI experiments, design and acquisition or building of MR coils, choice of reporter molecules and /or genes, radiolabeling procedures and synthesis of ligands.
- Currently administered jointly by the Advanced Imaging Research Center (AIRC) and the Department of Radiology
Translational Molecular Imaging Core (TMIC)
- Cyclotron and radiochemistry facility approved for CGMP production of PET radiopharmaceuticals for human use. Capable of producing 6 radioisotopes and >30 radiotracers in addition to the FDA-approved tracers
- A regulatory office in the Department of Radiology facilitates Investigational New Drug (IND) and Abbreviated New Drug Applications (ANDA) approval of radiotracers.
- Radiochemistry and nuclear medicine experts to advise investigators on the development and implementation of imaging protocols in a range of disease models (e.g., cancer, diabetes, metabolism, cardiotoxicity, neurodegenerative diseases, etc.)
- Pre-clinical imaging including a Siemens Inveon PET/CT scanner for small animal imaging
- State-of-the-art human imaging in the NE2 building including a GE Discovery IQ five ring PET/CT scanner and a Siemens 3T Biograph hybrid PET/MR scanner, both located in close proximity to our cyclotron facility
Publications
Jump to …
Multi-modality Imaging
“Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer”, N. J. Serkova, K. Glunde, C. R. Haney, M. Farhoud, A. DeLille, E. F. Redente, D. Simberg, D. C. Westerly, L. Griffin, R. P. Mason, Cancer Res., , 81(5), pp. 1189-1200. online 1Dec 2020 doi: 10.1158/0008-5472.CAN-20-0373
“Non-invasive evaluation of acute effects of tubulin binding agents: a review of imaging vascular disruption in tumors”, L. Liu, D. O’Kelly, R. Schuetze, G. Carlson, H. Zhou, M. L. Trawick, K. G. Pinney and R. P. Mason, .Molecules 2021, 26, 2551. https://doi.org/10.3390/ molecules26092551 PMID: 33925707 PMCID: PMC8125421 doi: 10.3390/molecules26092551
“Translating pre-clinical magnetic resonance imaging methods to clinical oncology” D. A. Hormuth, II, A. G. Sorace, J. Virostko, R. G. Abramson, Z. M. Bhujwalla, P. Enriquez-Navas, R. Gillies, J. D. Hazle, R. P. Mason, C. Chad Quarles, J. A. Weis, J. G. Whisenant, J. Xu, T. E. Yankeelov, J Magn Reson Imaging. 2019 Mar 29. doi: 10.1002/jmri.26731. [Epub ahead of print] PMID: 30925001
MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors. Chiu TD, Arai TJ, Campbell Iii J, Jiang SB, Mason RP, Stojadinovic S. PLoS One. 2018 May 30;13(5):e0198065. doi: 10.1371/journal.pone.0198065. eCollection 2018
A Perspective on Vascular Disrupting Agents that Interact with Tubulin: Preclinical Tumor Imaging and Biological Assessment. R. P. Mason, D. Zhao, L. Liu, M. L. Trawick, and K. G. Pinney, Integr. Biol., 3, 375-387, 2011 DOI: 10.1039/C0IB00135J; PMID: 21321746.
Multimodality imaging of hypoxia in preclinical settings. Mason R.P., Zhao D., Pacheco-Torres J., Cui W., Kodibagkar V.D., Gulaka P.K., Hao G., Thorpe P., Hahn E.W., Peschke P., Q J Nucl Med Mol Imaging 2010 Jun 54 3 259-80.
Molecular imaging of hypoxia. Krohn K.A., Link J.M., Mason R.P., J. Nucl. Med. 2008 Jun 49 Suppl 2 129S-48S.
Measuring changes in tumor oxygenation. Zhao D., Jiang L., Mason R.P. Meth. Enzymol. 2004 386 378-418.
Molecular imaging in prostate cancer. Karam J.A., Mason R.P., Koeneman K.S., Antich P.P., Benaim E.A., Hsieh J.T. J. Cell. Biochem. 2003 Oct 90 3 473-83.
Oximetry and Oxygen-Enhanced MRI
“In vivo Hypoxia Characterization using Blood Oxygen Level Dependent Magnetic Resonance Imaging in a Preclinical Glioblastoma Mouse Model”, N. Virani, J. Kwon, H. Zhou, Mason, Ross Berbeco, and A. Protti, Magn. Reson. Imaging, 76, 52-60 February 2021.
“Oxygen-Sensitive MRI: A Predictive Imaging Biomarker for Tumor Radiation Response?”, T. J. Arai, Donghan M. Yang, J. W. Campbell III, T. Chiu, X. Cheng, S. Stojadinovic, P. Peschke, and P. Mason, Int. J. Radiat. Biol. Phys. Accepted March 2021 Oxygen-Sensitive MRI: A Predictive Imaging Biomarker for Tumor Radiation Response? - ScienceDirect
Oxygen-Sensitive MRI Assessment of Tumor Response to Hypoxic Gas Breathing Challenge. D. M. Yang, T. J. Arai, J. W. Campbell III, J. L. Gerberich, H. Zhou, and R. P. Mason, NMRBiomed, 32 (7) e4101 July 2019
Examining Correlations of Oxygen Sensitive MRI (BOLD/TOLD) with [18F]FMISO PET in Rat Prostate Tumors. H. Zhou, S. Chiguru, R. R. Hallac, D. Yang, G. Hao, P. Peschke, R. P. Mason, Am. J. Nucl. Med. Mol. Imag. 9(2):156-167 2019
The effect of flow on BOLD (R2*) MRI of orthotopic lung tumor. H. Zhou, O. Belzile, Z. Zhang, J. Wagner, C. Ahn, J. A. Richardson, D. Saha, R. A. Brekken and R. P. Mason, Magn. Reson. Med., Magn Reson Med. 81:3787–3797 2019
Tumor physiological changes during hypofractionated stereotactic body radiation therapy assessed using multi-parametric magnetic resonance imaging. H. Zhou, Z. Zhang, R. Denney, J. S. Williams, J. Gerberich, S. Stojadinovic, D. Saha, J. M. Shelton, and R. P. Mason, Oncotarget, 8: 37464-37477, 2017
Developing Oxygen-Enhanced Magnetic Resonance Imaging as a Prognostic Biomarker of Radiation Response. D. A. White, Z. Zhang, L. Li, J. Gerberich, S. Stojadinovic, P. Peschke, R. P. Mason, Cancer Letters, 380, 69–77 (2016) doi:10.1016/j.canlet.2016.06.003
Carbon ion radiotherapy decreases the impact of tumor heterogeneity on radiation response in experimental prostate tumors. C. Glowa, C. P. Karger, S. Brons, D. Zhao, R. P. Mason, P. E. Huber, J. Debus, P. Peschke, Cancer Letters 378, (2) 97–103 (2016) doi:10.1016/j.canlet.2016.05.013
Tumor radio-sensitivity assessment by means of volume data and magnetic resonance indices measured on prostate tumor bearing rats. A. Belfatto, D. A. White, R. P. Mason, Z. Zhang, S. Stojadinovic, G. Baroni, and P. Cerveri, Med. Phys. 43, 1275 (2016); doi: 10.1118/1.4941746
A Noninvasive tumor oxygenation imaging strategy using magnetic resonance imaging of endogenous blood and tissue water. Z. Zhang, R. R. Hallac, P. Peschke, R. P. Mason, Magn. Reson. Med., online DOI 10.1002/mrm.24691 Feb. 2013.
Correlations of noninvasive BOLD and TOLD MRI with pO2 and relevance to tumor radiation response. R. R. Hallac, H. Zhou, R. Pidikiti, K. Song, S. Stojadinovic, D. Zhao, T. Solberg, P. Peschke, and R. P. Mason, Magn. Reson. Med., accepted (2013) DOI 10.1002/mrm.24846.
Quantitative tissue oxygen measurement in multiple organs using (19) F MRI in a rat model. Liu S., Shah S.J., Wilmes L.J., Feiner J., Kodibagkar V.D., Wendland M.F., Mason R.P., Hylton N., Hopf H.W., Rollins M.D. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2011 Jun.
Uncoupling hypoxia signaling from oxygen sensing in the liver results in hypoketotic hypoglycemic death. Kucejova B., Sunny N.E., Nguyen A.D., Hallac R., Fu X., Peña-Llopis S., Mason R.P., Deberardinis R.J., Xie X.J., Debose-Boyd R., Kodibagkar V.D., Burgess S.C., Brugarolas J. Oncogene 2011 May 30 18 2147-60.
Hexamethyldisiloxane-based nanoprobes for (1) H MRI oximetry. Gulaka P..K., Rastogi U., McKay M.A., Wang X., Mason R.P., Kodibagkar V.D. NMR in biomedicine 2011 Mar.
Comparison of 1H blood oxygen level-dependent (BOLD) and 19F MRI to investigate tumor oxygenation. Zhao D., Jiang L., Hahn E.W., Mason R.P. Magn Reson Med 2009 Aug 62 2 357-64.
Proton imaging of siloxanes to map tissue oxygenation levels (PISTOL): a tool for quantitative tissue oximetry. Kodibagkar V.D., Wang X., Pacheco-Torres J., Gulaka P., Mason R.P. NMR Biomed 2008 Oct 21 8 899-907.
Correlation of radiation response with tumor oxygenation in the Dunning prostate R3327-AT1 tumor. Bourke V.A., Zhao D., Gilio J., Chang C.H., Jiang L., Hahn E.W., Mason R.P. Int. J. Radiat. Oncol. Biol. Phys. 2007 Mar 67 4 1179-86.
Tumor physiologic response to combretastatin A4 phosphate assessed by MRI. Zhao D., Jiang L., Hahn E.W., Mason R.P. Int. J. Radiat. Oncol. Biol. Phys. 2005 Jul 62 3 872-80.
Comparison of BOLD contrast and Gd-DTPA dynamic contrast-enhanced imaging in rat prostate tumor. Jiang L., Zhao D., Constantinescu A., Mason R.P. Magn Reson Med 2004 May 51 5 953-60.
Tumor oxygen dynamics: correlation of in vivo MRI with histological findings. Zhao D., Ran S.., Constantinescu A., Hahn E.W., Mason R.P. Neoplasia 2003 Jul-Aug 5 4 308-18.
Interplay of tumor vascular oxygenation and tumor pO2 observed using near-infrared spectroscopy, an oxygen needle electrode, and 19F MR pO2 mapping. Kim J.G., Zhao D., Song Y., Constantinescu A., Mason R.P., Liu H. J Biomed Opt 2003 Jan 8 1 53-62.
Tumor oximetry: comparison of 19F MR EPI and electrodes. Mason R.P., Hunjan S., Constantinescu A., Song Y., Zhao D., Hahn E.W., Antich P.P., Peschke P. Adv. Exp. Med. Biol.2003 530 19-27.
Dynamic breast tumor oximetry: the development of prognostic radiology. Song Y., Constantinescu A., Mason R.P. Technol. Cancer Res. Treat. 2002 Dec 1 6 471-8.
Differential oxygen dynamics in two diverse Dunning prostate R3327 rat tumor sublines (MAT-Lu and HI) with respect to growth and respiratory challenge. Zhao D., Constantinescu A., Hahn E.W., Mason R.P. Int. J. Radiat. Oncol. Biol. Phys. 2002 Jul 53 3 744-56.
Evaluating Novel Therapeutics
“Oxygen-enhanced optoacoustic tomography reveals the effectiveness of targeting heme and oxidative phosphorylation at normalizing tumor vascular oxygenation” P. Ghosh, Y. Guo, A. Ashrafi, J. Chen, S. Dey, S. Zhong, J. Liu, J. Campbell, P. Chaitanya Konduri, J. Gerberich, M. Garrossian, R. P. Mason, L. Zhang, and L. Liu, Cancer Res., 2020;80:3542–55 doi: 10.1158/0008-5472.CAN-19-3247
Tubulin-destabilizing agent BPR0L075 induces vascular-disruption in human breast cancer mammary fat pad xenografts. L. Liu, H. Beck, X. Wang, H.-P. Hsieh, R. P. Mason, and X. Liu, PLoS One 7, 8 e43314 2012 doi:10.1371/journal.pone.0043314.
Antivascular effects of combretastatin A4 phosphate in breast cancer xenograft assessed using dynamic bioluminescence imaging and confirmed by MRI. Zhao D., Richer E., Antich P.P., Mason, R.P. FASEB J. 2008 Jul 22 7 2445-51.
Dynamic bioluminescence and fluorescence imaging of the effects of the antivascular agent Combretastatin-A4P (CA4P) on brain tumor xenografts. Liu L, Mason RP, Gimi B Cancer Lett. 2014 Oct
Development of Novel Contrast Agents and Non-invasive Imaging Biomarkers
Chemiluminescent Imaging
A Chemiluminescent Probe for HNO Quantification and Real-time Monitoring in Living Cells, W. An, L. S. Ryan, A. G. Reeves, K. J. Bruemmer, L. Mouhaffel, J. L. Gerberich, A. Winters, R. P. Mason, A. R. Lippert, Angw. Chem., 58 (5) 1361-1365 2019 DOI: 10.1002/ange.201811257
Energy transfer chemiluminescence for ratiometric pH imaging. An W, Mason RP, Lippert AR. Org Biomol Chem. 2018 May 22. doi: 10.1039/c8ob00972d. [Epub ahead of print]
Red-shifted emission from 1,2-dioxetane-based chemiluminescent reactions.Park JY, Gunpat J, Liu L, Edwards B, Christie A, Xie XJ, Kricka LJ, Mason RP Luminescence 2014 Sep 29 6 ii
Imaging beta-galactosidase activity in human tumor xenografts and transgenic mice using a chemiluminescent substrate. Liu L., Mason, R.P. PLoS ONE 2010 5 8 e12024.
Wavelength shifting of Chemiluminescence using Quantum Dots to enhance Tissue Light penetration E. A. Mason, R. Lopez, and R. P. Mason, Optical Mater. Exp., 6 (4) 1392 (2016) DOI:10.1364/OME.6.001384
In Vivo Chemiluminescent Imaging Agents for Nitroreductase and Tissue Oxygenation Cao, J. Campbell, L. Liu, R. P. Mason, and A. R. Lippert, Analyt. Chem. 88 (9): 4995-5002 (2016) DOI:10.1021/acs.analchem.6b01096
Oxygen Sensitive Reporters
GdDO3NI, a nitroimidazole-based T 1 MRI contrast agent for imaging tumor hypoxia in vivo. Gulaka PK, Rojas-Quijano F, Kovacs Z, Mason RP, Sherry AD, Kodibagkar VD J. Biol. Inorg. Chem. 2013 Nov
Multimodality imaging of hypoxia in preclinical settings. Mason, R.P., Zhao D., Pacheco-Torres J., Cui W., Kodibagkar V.D., Gulaka P..K., Hao G., Thorpe P., Hahn E.W., Peschke P. Q J Nucl Med Mol Imaging 2010 Jun 54 3 259-80.
Quantitative tissue oxygen measurement in multiple organs using (19) F MRI in a rat model. Liu S., Shah S.J., Wilmes L.J., Feiner J., Kodibagkar V.D., Wendland M.F., Mason, R.P., Hylton N., Hopf H.W., Rollins M.D. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2011 Jun.
Proton imaging of siloxanes to map tissue oxygenation levels (PISTOL): a tool for quantitative tissue oximetry. Kodibagkar V.D., Wang X., Pacheco-Torres J., Gulaka P., Mason, R.P. NMR Biomed 2008 Oct 21 8 899-907.
Molecular imaging of hypoxia. Krohn K.A., Link J.M., Mason, R.P. J. Nucl. Med. 2008 Jun 49 Suppl 2 129S-48S.
Enzyme Activity Reporters
In Vivo Chemiluminescent Imaging Agents for Nitroreductase and Tissue Oxygenation Cao, J. Campbell, L. Liu, R. P. Mason, and A. R. Lippert, Analyt. Chem. 88 (9): 4995-5002 (2016) DOI:10.1021/acs.analchem.6b01096
Novel S-Gal® analogs as 1H MRI reporters for in vivo detection of β-galactosidase. P. K. Gulaka, J.X. Yu, L. Liu, R.P. Mason and V. D. Kodibagkar, Magn. Reson. Imaging 31(6):1006-1011 (2013).
Dual (19)F/(1)H MR gene reporter molecules for in Vivo detection of ß-Galactosidase. Yu, J.X., Kodibagkar V.D., Hallac R.R., Liu L., Mason, R.P. Bioconjug. Chem. 2012 Mar 23 3 596-603.
S-Gal, a novel 1H MRI reporter for beta-galactosidase. Cui W., Liu L., Kodibagkar V.D., Mason, R.P. Magn Reson Med 2010 Jul 64 1 65-71.
Imaging beta-galactosidase activity in human tumor xenografts and transgenic mice using a chemiluminescent substrate. Liu L., Mason, R.P. PLoS ONE 2010 5 8 e12024.
A 19F-NMR approach using reporter molecule pairs to assess beta-galactosidase in human xenograft tumors in vivo. Yu, J.X., Kodibagkar V.D., Liu L., Mason, R.P. NMR Biomed 2008 Aug 21 7 704-12.
19F-NMR detection of lacZ gene expression via the enzymic hydrolysis of 2-fluoro-4-nitrophenyl beta-D-galactopyranoside in vivo in PC3 prostate tumor xenografts in the mouse. Liu L., Kodibagkar V.D., Yu, J.X., Mason, R.P. FASEB J. 2007 Jul 21 9 2014-9.
Novel NMR platform for detecting gene transfection: synthesis and evaluation of fluorinated phenyl beta-D-galactosides with potential application for assessing LacZ gene expression. Yu J., Otten P., Ma Z., Cui W., Liu L., Mason, R.P. Bioconjug. Chem. 2004 Nov-Dec 15 6 1334-41
pH
6-Trifluoromethylpyridoxine: novel (19)F NMR pH indicator for in vivo detection. Yu, J.X., Cui W., Bourke V.A., Mason, R.P. J. Med. Chem. 2012 Aug 55 15 6814-21.
"Development of novel 19F NMR pH indicators: Synthesis and evaluation of a series of fluorinated vitamin B6 analogs," S. He, R.P. Mason, S. Hunjan, V. D. Mehta, V. Arora, R. Katipally, P. V. Kulkarni, and P. P. Antich, BioOrg. Med. Chem. 6, 1631-1639 (1998).
"Simultaneous intra- and extra-cellular pH measurement using 19F NMR of 6-Fluoropyridoxol." S. Hunjan, R.P. Mason, V. D. Mehta, P. V. Kulkarni, S. Aravind, V. Arora and P. P. Antich, Magn. Reson. Med., 39, 551-556 (1998).
Vascular Targeting Agents
Bioreductively Activatable Prodrug Conjugates of Combretastatin A-1 and Combretastatin A-4 as Anticancer Agents Targeted Towards Tumor-Associated Hypoxia, B. A. Winn, L. Devkota, B. Kuch, M. T. MacDonough, T. E. Strecker, Y. Wang, Z. Shi, J. L. Gerberich, D. Mondal, A. J. Ramirez, E. Hamel, D. J. Chaplin, P. Davis, R. P. Mason, M. L. Trawick, K. G. Pinney, J. Nat. Prod., 83, 937-954, 2020.
Noninvasive Anatomical and Functional Imaging of Orthotopic Glioblastoma Development and Therapy using Multispectral Optoacoustic Tomography, G. Balasundaram, L. Ding, L. Xiuting, A. Attia, X. Luis, D. Ben, C. Jun, H. Ho, P. Chandrasekharan, H. C. Tay, H. Q. Lim, C. Bing Ong, R. P. Mason, D. Razansky, M. Olivo, Trans. Oncol., 11, 1251-1258 (2018).
Evaluation of tumor ischemia in response to an indole-based vascular disrupting agent using BLI and (19)F MRI. Zhou H, Hallac RR, Lopez R, Denney R, MacDonough MT, Li L, Liu L, Graves EE, Trawick ML, Pinney KG, Mason RP Am J Nucl Med Mol Imaging 2015 5 2 143-53.
The vascular disrupting activity of OXi8006 in endothelial cells and its phosphate prodrug OXi8007 in breast tumor xenografts. Strecker TE, Odutola SO, Lopez R, Cooper MS, Tidmore JK, Charlton-Sevcik AK, Li L, MacDonough MT, Hadimani MB, Ghatak A, Liu L, Chaplin DJ, Mason RP, Pinney KG, Trawick ML Cancer Lett. 2015 Sep.
Dynamic bioluminescence and fluorescence imaging of the effects of the antivascular agent Combretastatin-A4P (CA4P) on brain tumor xenografts. Liu L, Mason RP, Gimi B Cancer Lett. 2015 Jan 28;356(2 Pt B):462-9.
Dynamic contrast enhanced fluorescent molecular imaging of vascular disruption induced by combretastatin-A4P in tumor xenografts. Liu L, Su X, Mason RP J Biomed Nanotechnol 2014 Aug 10 8 1545-51.
A perspective on vascular disrupting agents that interact with tubulin: preclinical tumor imaging and biological assessment. Mason, R.P., Zhao D., Liu L., Trawick M.L., Pinney K.G. Integr Biol (Camb) 2011 Apr 3 4 375-87.
Synthesis of a 2-Aryl-3-Aroyl-Indole Salt (OXi8007) Resembling Combretastatin A-4 with Application as a Vascular Disrupting Agent. M. B. Hadimani, M. T. MacDonough, A. Ghatak, T. E. Strecker, R. Lopez, M. Sriram, B. L. Nguyen, R. J. Kessler, A. R. Shirali, L. Liu, C. M. Garner, G. Pettit, R. E. Hamel, D. J. Chaplin, R. P. Mason, M. L. Trawick, K. G. Pinney, J. Nat. Prod., 76(9):1668-78, DOI: 10.1021/np400374w 2013
Comparison of optical and power Doppler ultrasound imaging for non-invasive evaluation of arsenic trioxide as a vascular disrupting agent in tumors. Alhasan M.K., Liu L., Lewis M.A., Magnusson J., Mason, R.P. PLoS ONE 2012 7 9 e46106.
In vivo near-infrared spectroscopy and magnetic resonance imaging monitoring of tumor response to combretastatin A-4-phosphate correlated with therapeutic outcome. Zhao D., Chang C.H., Kim J.G., Liu H, Mason, R.P. Int. J. Radiat. Oncol. Biol. Phys. 2011 Jun 80 2 574-81.
Antivascular effects of combretastatin A4 phosphate in breast cancer xenograft assessed using dynamic bioluminescence imaging and confirmed by MRI. Zhao D., Richer E., Antich P.P., Mason, R.P. FASEB J. 2008 Jul 22 7 2445-51.
Tumor physiologic response to combretastatin A4 phosphate assessed by MRI. Zhao D., Jiang L., Hahn E.W., Mason, R.P. Int. J. Radiat. Oncol. Biol. Phys. 2005 Jul 62 3 872-80.
Oxygenation in a human tumor xenograft: manipulation through respiratory challenge and antibody-directed infarction. Mason, R.P., Constantinescu A., Ran S., Thorpe P.E. Adv. Exp. Med. Biol. 2003 530 197-204.
“Structural Interrogation of Benzosuberene-Based Inhibitors of Tubulin Polymerization” C. A. Herdman, L. Devkota, C.-M. Lin, H. Niu, T. E. Strecker, R. Lopez, L. Liu, C. S. George, R. P. Tanpure, E. Hamel, D. J. Chaplin, R. P. Mason, M. L. Trawick, and K. G. Pinney, Bioorg. Med. Chem., 23(24), 7497–7520 (2015) doi: 10.1016/j.bmc.2015.10.012
“Design, Synthesis, and Biological Evaluation of Water-Soluble Amino Acid Prodrug Conjugates Derived from Combretastatin, Dihydronaphthalene, and Benzosuberene-Based Parent Vascular Disrupting Agents" ”, L. Devkota, C.-M. Lin, T. E. Strecker, Y. Wang, J. K. Tidmore, Z. Che, R. Guddneppanavar, C. J. Jelinek, R. Lopez, L. Liu, E. Hamel, R. P. Mason, D. J. Chaplin, M. L. Trawick, and K. G. Pinney, Bioorg. Med. Chem. 24: 938–956 (2016), doi: 10.1016/j.bmc.2016.01.007
Synthesis and Biological Evaluation of Benzocyclooctene-based and Indene-based Anticancer Agents that Function as Inhibitors of Tubulin Polymerization C. A. Herdman, T. E. Strecker, R. P. Tanpure, Z. Chen, A. Winters, J. Gerberich, L. Liu, E. Hamel, R. P. Mason, D. J. Chaplin, M. L. Trawick, and K. G. Pinney, Med. Chem. Commun., 7, 2418 2427, (2016) DOI: 10.1039/C6MD00459H
Synthesis of dihydronaphthalene analogues inspired by combretastatin A-4 and their biological evaluation as anticancer agents. C. J. Maguire, Z. Chen, V. P. Mocharla, M. Sriram, T. E. Strecker, E. Hamel, H. Zhou, R. Lopez, R. P. Mason, D. J. Chaplin, M. L. Trawick, K. G. Pinney, MedChemComm 9 (10):1649-1662; OCT 1 2018
Phosphatidylserine-targeted molecular imaging of tumor vasculature by magnetic resonance imaging. Zhou H, Stafford JH, Hallac RR, Zhang L, Huang G, Mason RP, Gao J, Thorpe PE, Zhao D J Biomed Nanotechnol 2014 May 10 5 846-55.
Vascular imaging of solid tumors in rats with a radioactive arsenic-labeled antibody that binds exposed phosphatidylserine. Jennewein M., Lewis M.A., Zhao D., Tsyganov E., Slavine N., He J., Watkins L., Kodibagkar V.D., O'Kelly S., Kulkarni P., Antich P.P., Hermanne A., Rösch F., Mason, R.P., Thorpe P.E. Clin. Cancer Res. 2008 Mar 14 5 1377-85.
Technology Development
MSOT
“Evaluating Online Filtering Algorithms to Enhance Dynamic Multispectral Optoacoustic Tomography” D. O’Kelly, Y. Guo, and R. P. Mason, Photoacoustics, 19, 100184 2020 https://doi.org/10.1016/j.pacs.2020.100184
“Tomographic Breathing Detection- A Method to Noninvasively Assess in situ Respiratory Dynamics”, D. O'Kelly, H. Zhou, R. P. Mason, J. Biomed. Optics, 23(5), 056011 (May 2018)
MRI
Oxygen-Sensitive MRI Assessment of Tumor Response to Hypoxic Gas Breathing Challenge”, D. M. Yang, T. J. Arai, J. W. Campbell III, J. L. Gerberich, H. Zhou, and R. P. Mason, NMRBiomed, 32 (7) e4101 July 2019 https://onlinelibrary.wiley.com/doi/full/10.1002/nbm.4101
“Examining Correlations of Oxygen Sensitive MRI (BOLD/TOLD) with [18F]FMISO PET in Rat Prostate Tumors”, H. Zhou, S. Chiguru, R. R. Hallac, D. Yang, G. Hao, P. Peschke, R. P. Mason, Am. J. Nucl. Med. Mol. Imag. 9(2):156-167 2019
“MR-CBCT Image-Guided System for Radiotherapy of Orthotopic Rat Prostate Tumors”, T. D. Chiu, T. J. Arai, J. Campbell III, S. B. Jiang, R. P. Mason, and S. Stojadinovic, PLoSONE, https://doi.org/10.1371/journal.pone.0198065, 1-19, May 30, 2018
“The effect of flow on BOLD (R2*) MRI of orthotopic lung tumor” H. Zhou, O. Belzile, Z. Zhang, J. Wagner, C. Ahn, J. A. Richardson, D. Saha, R. A. Brekken and R. P. Mason, Magn. Reson. Med., Magn Reson Med. 81:3787–3797 2019; https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrm.27661 DOI:10.1002/mrm.27661
“Tumor Oximetry: demonstration of an enhanced dynamic mapping procedure using fluorine-19 echo planar magnetic resonance imaging in the Dunning prostate R3327-AT1 rat tumor,” S. Hunjan, D. Zhao, A. Constantinescu, E. W. Hahn, P. P. Antich, and R. P. Mason, Int. J. Radiat. Oncol. Biol. Phys. 49 (4), 1097-1108 (2001)
“In vivo oxygen tension and temperature: simultaneous determination using 19F NMR spectroscopy of perfluorocarbon,” R. P. Mason, H. Shukla and P. P. Antich, Magn. Reson. Med., 29, 296-302 (1993)
“Echo-planar imaging of perfluorocarbons,” B. R. Barker, R. P. Mason and R. M. Peshock, Magn. Reson. Imaging, 11(8),1165-73 (1993)
New Frontiers and Developing Applications in 19F NMR, J.X. Yu, R. R. Hallac, S. Chiguru, and R. P. Mason, Prog. NMR Spectrosc., 70 25–49 (2013).
Optical
“Wavelength shifting of Chemiluminescence using Quantum Dots to enhance Tissue Light penetration”, E. A. Mason, R. Lopez, and R. P. Mason, Optical Mater. Exp., 6 (4) 1392 (2016) DOI:10.1364/OME.6.001384
“A Multi-Camera System for Bioluminescence Tomography in Preclinical Oncology Research“, M. A. Lewis, E. Richer, N. V. Slavine V. D. Kodibagkar, T. C. Soesbe, P. P. Antich and R. P. Mason, Diagnostics, 3, 325-343; 2013, doi:10.3390/doi:10.3390/diagnostics3030325
“On the potential for molecular imaging with Cerenkov luminescence” M. A. Lewis, V. D. Kodibagkar, O. K. Őz, and R. P. Mason, Optics Letters, 35 (23), 3889-3891 (2010) PMID: 21124555