Faculty and Research Interests
J. David Farrar, Ph.D., Associate Professor
Lab Website
david.farrar@utsouthwestern.edu
The Farrar Lab is generally interested in understanding how external signals regulate T cell function and development. We study both the regulatory components that impact allergic diseases and external signals that control inflammation and immune homeostasis.
Dustin Hancks, Ph.D., Assistant Professor
Lab Website
dustin.hancks@utsouthwestern.edu
The genome sequence of an organism can be thought of as a type of “encyclopedia.” Filled with vast amounts of information including the blueprint of an organism, genomes also contain a historical record of past battles with pathogens. Using these molecular scars of battle along with evolutionary analysis, genomics, and molecular biology, the Hancks Lab aims to better understand host defenses against pathogens including the identification of new battlefronts critical in determining the outcome of infection. Furthermore, another major goal is to increase our understanding of cell biology by exploiting insights from the adaptive mechanisms used by viruses.
Lora Hooper, Ph.D., Professor and Chair
Lab Website
lora.hooper@utsouthwestern.edu
The Hooper lab studies how the resident intestinal microbiota interacts with the immune system of humans and other mammalian hosts. Group members use a broad mix of experimental approaches, ranging from studies in animal models to the use of structural methods to understand protein function.
Yuki Obata, Ph.D., Assistant Professor
The Obata Lab studies how environmental signals shape neural circuits and the immune system. We use a variety of experimental techniques, including state-of-the-art genetic tools, in vivo physiological assays, gnotobiotic animals and multi-omics technologies. The Obata lab is also interested in elucidating the molecular mechanisms of inter-organ communication, including the Gut-Brain axis.
Robert Orchard, Ph.D., Assistant Professor
Lab Website
robert.orchard@utsouthwestern.edu
The goal of the Orchard lab is to have a more comprehensive understanding of host-pathogen interactions by leveraging functional genomic CRISPR/Cas9 screens. We hope to identify novel vulnerabilities in a virus or bacterial life cycle which could represent a therapeutic target. Additionally, the Orchard lab uses viruses as tools to better understand mammalian physiology and immune responses. We currently are investigating norovirus, influenza virus, and enterovirus biology.
Tiffany Reese, Ph.D., Assistant Professor
Lab Website
tiffany.reese@utsouthwestern.edu
The Reese lab studies how chronic viruses and other pathogens change the immune system and how the immune system controls these pathogens. Our goal is to use mouse pathogens to model how chronic infections change responses to coinfections and vaccinations.
Andrew Sandstrom, Ph.D., Assistant Professor
Sandstrom Lab
andrew.sandstrom@utsouthwestern.edu
The focus of the Sandstrom lab is to uncover the molecular mechanisms through which the immune system recognizes infection and stress. We investigate how the immune system can recognize pathogen-associated activities, such as the enzymatic activity of pathogen secreted proteins or changes in homeostasis induced by pathogens using a combination of immunology, cellular biology, and biochemistry.
Nicolai van Oers, Ph.D., Professor
Lab Website
nicolai.vanoers@utsouthwestern.edu
We are interested in understanding the molecular mechanisms that regulate the development and regeneration of the thymus under normal and disease states. The studies incorporate our recent discoveries of the coding and noncoding RNAs responsible for primary immunodeficiency diseases in humans, specifically with those connected with a hypoplasia of the thymus. We are using mouse models of selected human disorders along with thymic tissues from patients with the goal of regenerating normal thymic tissue functions. Our findings are revealing novel contributions of both noncoding RNAs, such as long intergenic noncoding RNAs (lncRNAs), microRNAs (miRNAs), and small noncoding RNAs (sncRNAs) in normal health and disease, including tuberculosis.
Ellen Vitetta, Ph.D., Professor
ellen.vitetta@utsouthwestern.edu
The Vitetta lab has developed and patented a highly stable, safe, and effective recombinant ricin vaccine that protects mice and primates against aerosolized ricin; it is safe and immunogenic in humans. Prior to carrying out the pivotal clinical trial, we are profiling epitope-specific antibodies from archived sera to develop an assay that predicts protection. This assay will be used in the final dose-finding clinical trial. We are also exploring a novel vaccine platform based on synthetic "peptoid" (B cell) epitopes that are protease-resistant and highly immunogenic when attached to carrier proteins. The lab will screen large, diverse libraries of peptoids with broadly protective monoclonal antibodies against pathogens, toxins, and prions and use our "hits" to generate protective vaccines.
Tuoqi Wu, Ph.D., Assistant Professor
Lab Website
tuoqi.wu@utsouthwestern.edu
The Wu lab focuses on the molecular programs of T cell exhaustion and T cell stemness. We hope to apply this knowledge to the development of more effective vaccines and immunotherapies.
Nan Yan, Ph.D., Professor
Lab Website
nan.yan@utsouthwestern.edu
The Yan lab is primarily interested in the molecular mechanisms of innate immunity and how they impact infectious and autoimmune diseases. We all know that innate immune signaling pathways are essential for detecting pathogens, and mutations in key molecules of these pathways can also cause autoimmune diseases. We study both ends of the spectrum, with a strong focus on monogenic immune diseases that affect genes that also play important roles in infection.
Chen Yao, Ph.D., Assistant Professor
Lab Website
chen.yao@utsouthwestern.edu
The Yao Lab studies the transcriptional and epigenetic regulation of T cell differentiation and function during viral infection and cancer. The goal is to identify genes and pathways that can be harnessed to enhance the efficacy of vaccines and immunotherapies.
Zhenyu Zhong, Ph.D., Assistant Professor
Lab Website
zhenyu.zhong@utsouthwestern.edu
The goal of the Zhong lab is to investigate the fundamental mechanisms by which mitochondria sense perturbation of tissue homeostasis, initiate inflammation and orchestrate tissue repair and regeneration. The Zhong Lab is also interested in understanding how dysregulation of such processes leads to disease development.