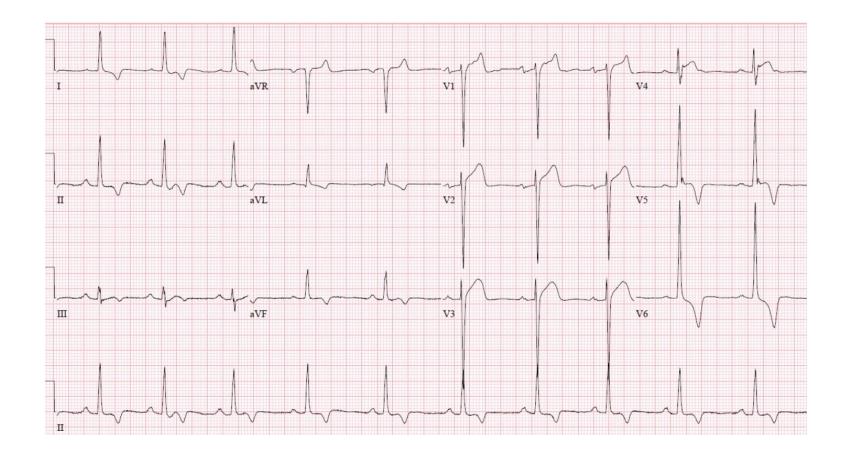
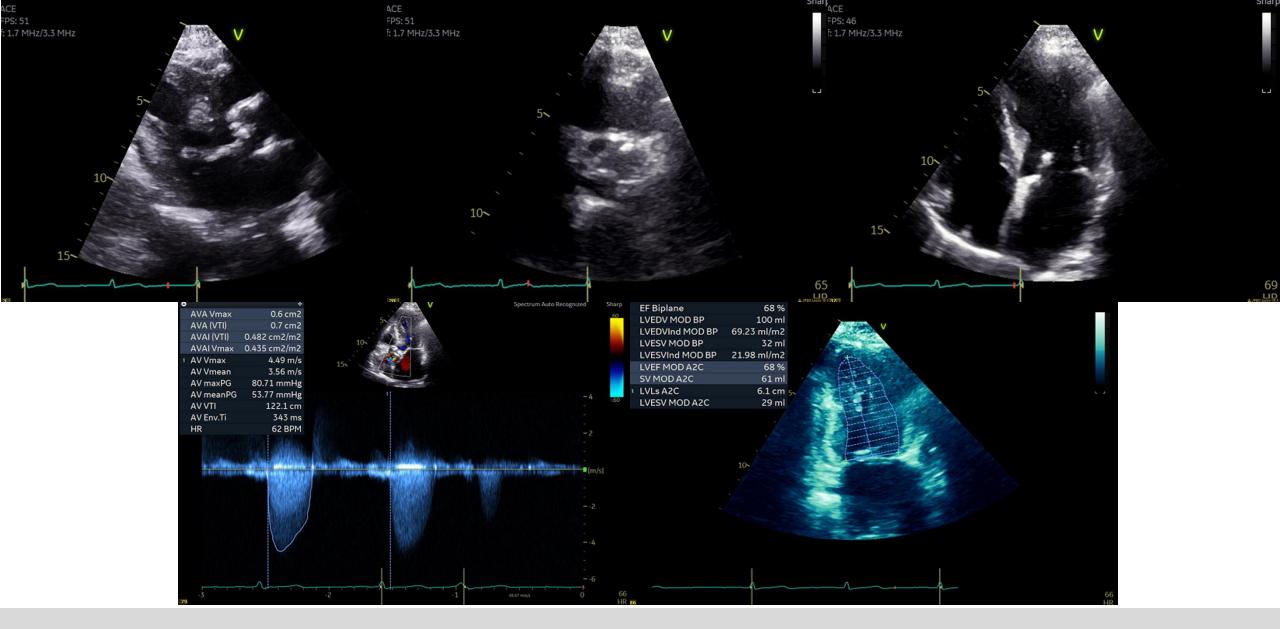


Aortic valve stenosis

Dr. Gloria Ayuba

Disclosures

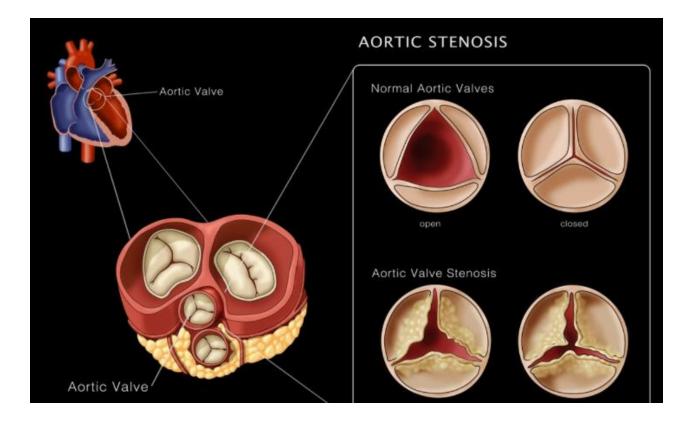

None


- 85 y.o. female referred by PCP incidental cardiac murmur and an abnormal echo
- PMH: DM2, CKD, PAF, HLD,COPD, OA of Hip

- NSR
- LVH with strain

Case

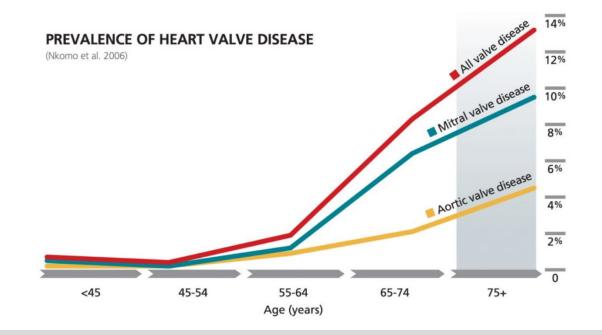
- Echo: LVEF 68%, peak velocity 4.5 m/s, mean gradient 54 mmHg, AVA 0.7cm²
- No symptoms



Objectives

- Definition
- Etiology and pathophysiology
- Epidemiology
- Classification
- Management

Normal Aortic Valve


- 3 thin cusps
- Good leaflet separation
- Unrestricted opening
- Valve area ~ 3 to 4 cm2

Aortic stenosis

Aortic valve disease is common

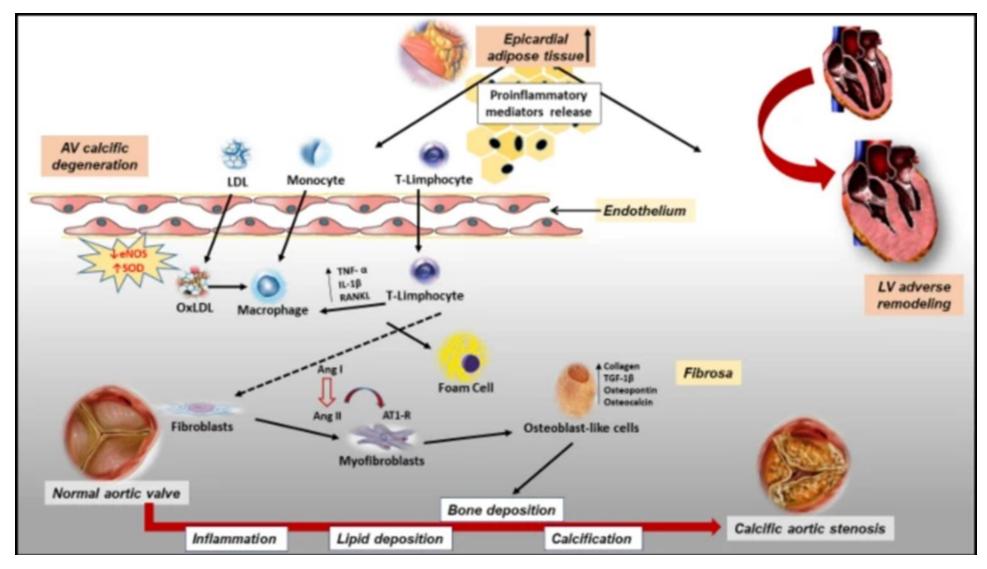
Prevalence rate 4-7% (65 years of age or older)

UTSouthwestern Medical Center

At risk for developing AS

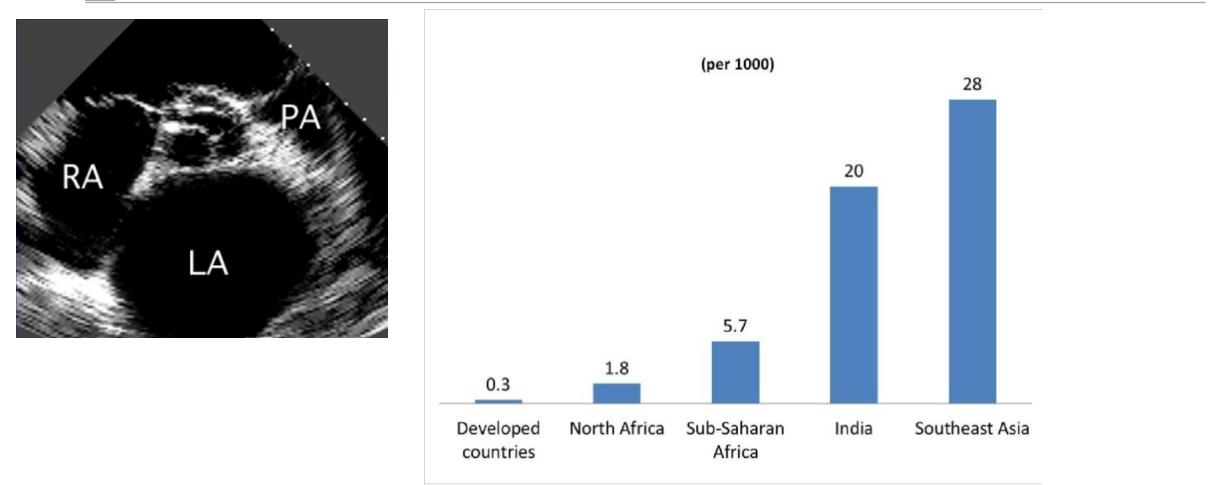
- Aortic valve sclerosis
- Chest irradiation
- Congenital abnormalities
- Infections (rheumatic fever/infective endocarditis)
- HD risk factors (HLD, tobacco use)

Etiology


Congenital

Rheumatic

Degenerative



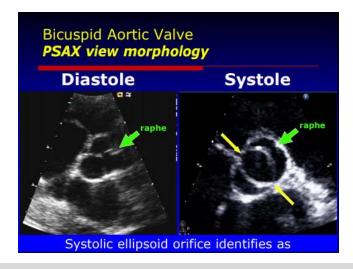
Conte et al. Aging Clinical and Experimental Research. 2021;33:1765–70

Rheumatic Aortic Stensosis: Less calcification, More commissural fusion

Curr Opin Pediatr. 2015;27:116-23

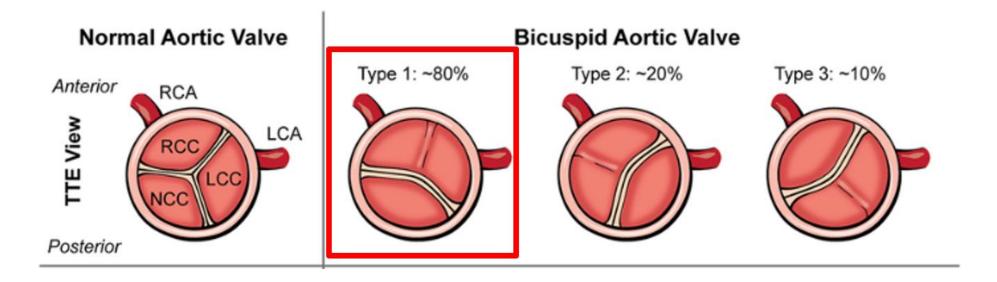
Congenital

Bicuspid Aortic valve

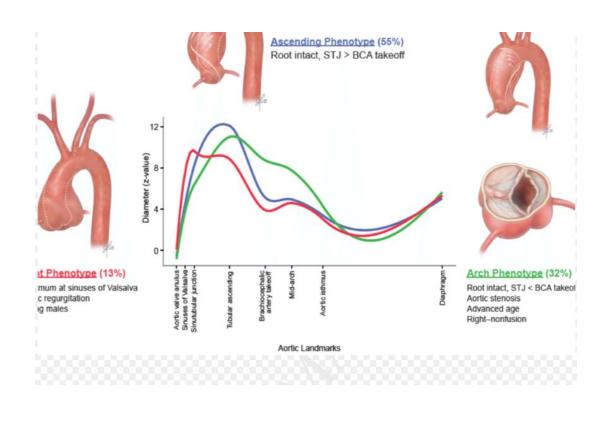

- Most common congenital anomaly
- Commissure may be horizontal or vertical
- Accelerated calcification -> premature stenosis
- Proximal aortopathy
- Associated abnormalities coarctation

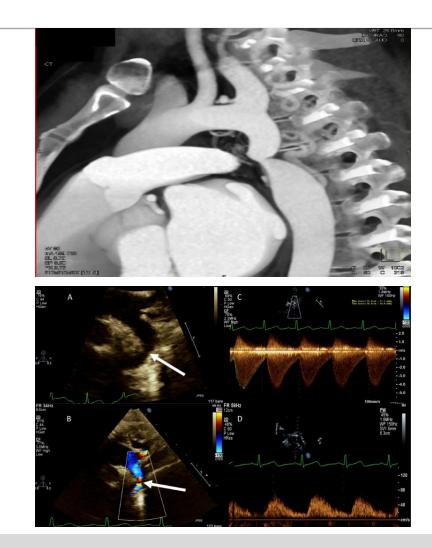
Bicuspid Aortic Valve

PLAX View - Doming

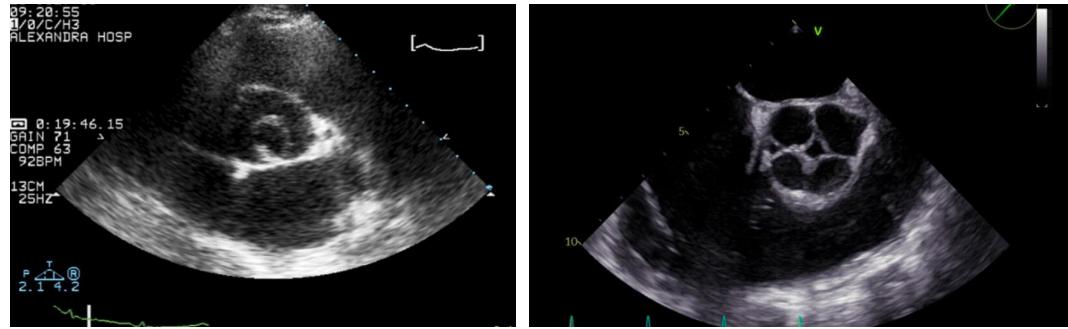

Diastole

Systole




Bicuspid AV morphology

Associated lesions



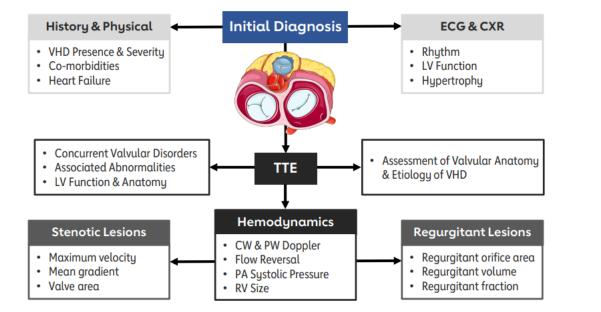
UTSouthwestern Medical Center

Congenital anomalies

Quadricuspid

Evaluation

AS: MURMUR


- The hallmark finding is a **crescendo-decrescendo ejection murmur**, heard best with the diaphragm of the stethoscope at the right upper sternal border when a patient is sitting upright leaning forward.
- The murmur typically radiates to one or both carotid arteries and has a harsh or grating quality.
- The intensity of the systolic murmur does not correspond to the severity of AS; rather, **the timing of the peak and the duration of the murmur** corresponds to the severity of AS. The more severe the stenosis, the longer the duration of the murmur and the more likely it peaks at late systole.

Inspection: Carotid pulse

- The quality of the arterial pulse reflects the obstruction to blood flow into the peripheral arterial circulation.
- The arterial pulse :as "**parvus and tardus**", ie, it is small or weak and rises slowly.
- Best appreciated in the carotid artery where the pulse is reduced in amplitude and delayed in occurrence.
- The delay can be appreciated by simultaneous palpation of the apex (PMI) and the carotid artery.
- There may be :an associated carotid artery thrill or coarse vibration ("shuddering")→ due to the marked turbulence of blood flow across the stenotic valve.

American Heart Association

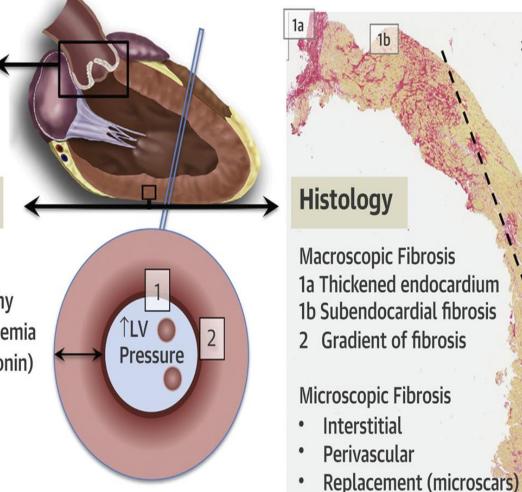
Evaluation of the Patient With Known or Suspected Native VHD

Abbreviations: CW indicates continuous wave; LV, left ventricle; PASP, pulmonary artery systolic pressure; PW, pulsed wave; RV, right ventricle; TTE, transthoracic echocardiography; and VHD, valvular heart disease.

Otto, CM et al. 2020 ACC/AHA. Guideline for the Management of Patients With Valvular Heart Disease Circulation.

Symptoms

- The classic symptoms due to AS are heart failure (HF), syncope, and angina. However, these "classic" symptoms reflect end-stage disease.
- Now, with earlier diagnosis by echocardiography and prospective followup of patients, the most common presenting symptoms are:
- 1. Dyspnea on exertion or decreased exercise tolerance
- 2. Exertional dizziness
- 3. Exertional angina

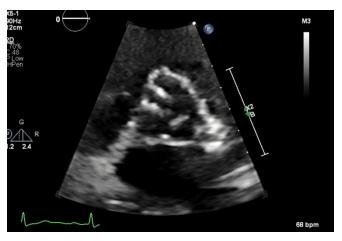


Physiologic sequalae

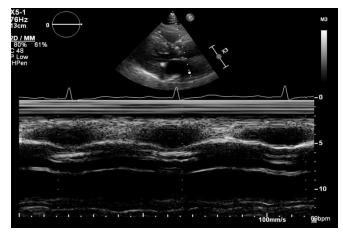
Aortic Stenosis

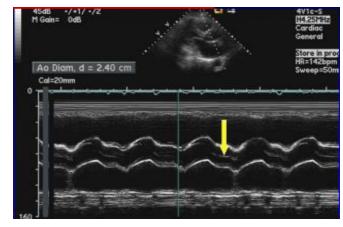
Physiology

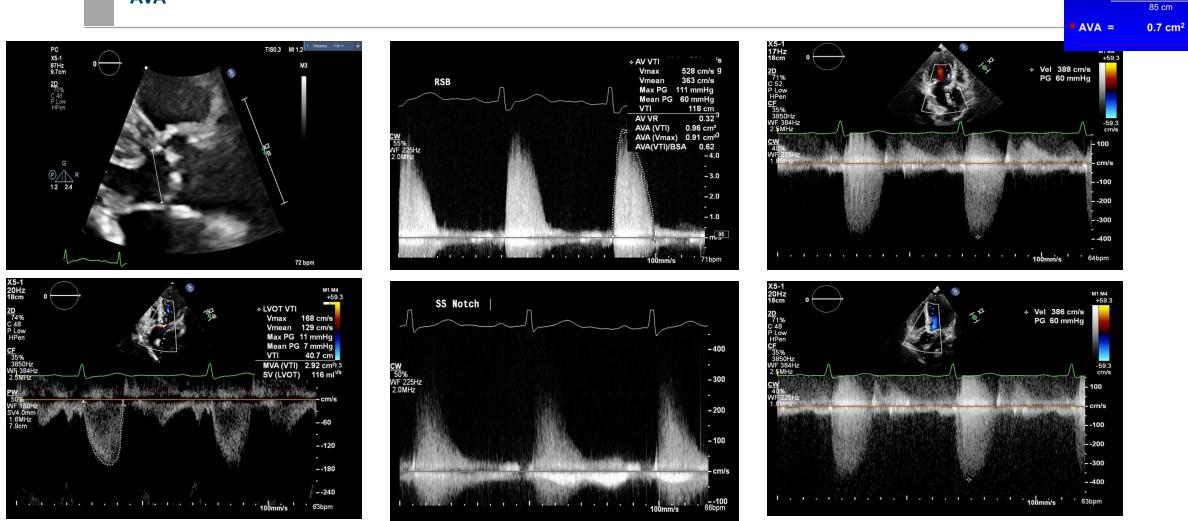
↑Wall stress
Myocyte hypertrophy
Subendocardial ischemia
Cell death (hs-Troponin)
Myocardial fibrosis
↓diastolic function
↓systolic function


LVH

x40


- Reduction in coronary flow reserve
- Subendocardial ischemia
- Apoptosis
- Myocardial fibrosis (interstitial vs replacement)
- Diastolic dysfunction
- Pulmonary HTN
- Systolic dysfunction


Echo evaluation



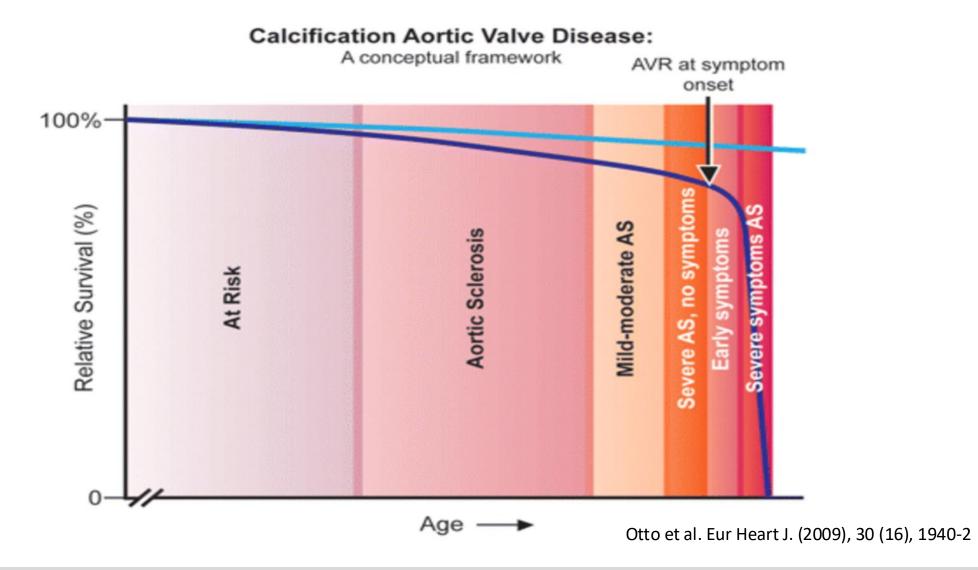
Normal

UTSouthwestern Medical Center AVA

UTSouthwestern Medical Center

Calculating Aortic Valve Area

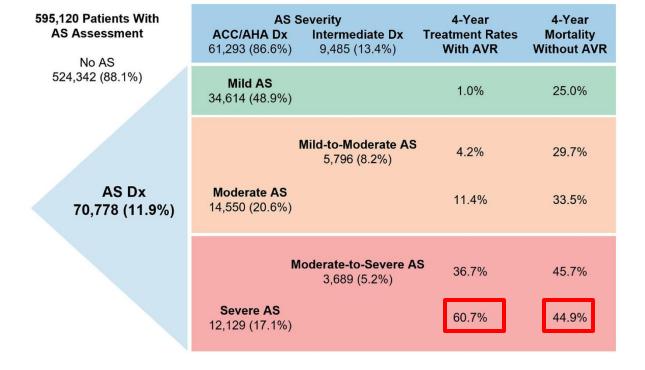
AVA = $\frac{(\text{Diameter}_{LVOT} / 2)^2 \text{ x } \pi \text{ x } \text{VTI}_{LVOT}}{\text{VTI}_{AV}}$


AVA = $(2.1 \text{ cm} / 2)^2 \times 3.14 \times 19 \text{ cm}$

Severity grading

	Aortic sclerosis	Mild	Moderate	Severe
Peak velocity (m/s)	≤2.5 m/s	2.6-2.9	3.0-4.0	≥4.0
Mean gradient (mmHg)	-	<20	20-40	≥40
AVA (cm ²)	-	> 1.5	1.0-1.5	<1.0
Indexed AVA (cm ² /m ²)	-	>0.85	0.60-0.85	<0.6
Velocity ratio	-	> 0.50	0.25-0.50	< 0.25

Very severe/ critical AS: Peak velocity > 5.0 m/s



Mortality associated with untreated aortic stenosis

CENTRAL ILLUSTRATION: Mortality Associated With Untreated Aortic Stenosis

Généreux P, et al. J Am Coll Cardiol. 2023;82(22):2101-2109.

ACC/AHA guidelines

2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease

A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines

Developed in collaboration with and endorsed by the American Association for Thoracic Surgery, American Society of Echocardiography, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons

Catherine M. Otto, MD, FACC, FAHA, *Co-Chair* Rick A. Nishimura, MD, MACC, FAHA, *Co-Chair*

Robert O. Bonow, MD, MS, MACC, FAHA Blase A. Carabello, MD, FACC, FAHA John P. Erwin III, MD, FACC, FAHA Federico Gentile, MD, FACC Hani Jneid, MD, FACC, FAHA Eric V. Krieger, MD, FACC Michael Mack, MD, MACC Christopher McLeod, MBCHB, PhD, FAHA Patrick T. O'Gara, MD, MACC, FAHA† Vera H. Rigolin, MD, FACC, FAHA Thoralf M. Sundt III, MD, FACC, FAHA Annemarie Thompson, MD Christopher Toly

*Writing committee members are required to recuse themselv voting on sections to which their specific relationships with in apply; see Appendix 1 for detailed information. †ACC/AHA Joint Committee on Clinical Practice Guidelines Lis

Clinical stage of AS

STAGE	VALVE ANATOMY	VALVE HEMODYNAMICS	SYMPTOMS
A At risk of AS	Bicuspid aortic valve or other congenital valve anomalyAortic valve sclerosis	+ Aortic V_{max} <2 m/s with normal leaflet motion	None
B Progressive AS	 Mild to moderate leaflet calcification Fibrosis of a bicuspid or trileaflet valve with reduction in systolic motion Rheumatic valve changes with commissural fusion 	 Mild AS: V_{max} 2-2.9 m/s or mean ΔP <20 mmHg Moderate AS: V_{max} 3-3.9 m/s or mean ΔP 20-39 mmHg 	None
C Asymptomatic Severe AS	 C1: Asymptomatic severe AS C2: Asymptomatic severe AS with left ventricular systolic dysfunction (LVEF <50%) Both C1 and C2 may show: Severe leaflet calcification/fibrosis Congenital stenosis with severely reduced leaflet opening 	 C1 and C2: V_{max} ≥4 m/s or mean ΔP ≥40 mmHg, AVA typically ≤1 cm² (or AVAi 0.6 cm²/m²) but not required to define severe AS Very severe AS: V_{max} ≥5 m/s or mean ΔP ≥60 mmHg 	C1: None; exercise testing reasonable confirm symptom status C2: None
D Symptomatic Severe AS	 D1: Symptomatic severe high-gradient AS D2: Symptomatic severe low-flow low-gradient AS with reduced LVEF (<50%) D3: Symptomatic severe low-gradient AS with normal LVEF (<50%) or paradoxical low-flow severe AS D1, D2, and D3 may show: Severe leaflet calcification/fibrosis with reduced leaflet motion 	 D1: V_{max} ≥4 m/s or mean ΔP ≥40 mmHg, AVA typically ≤1 cm² (or AVAi 0.6 cm²/m²) but may be larger with mixed AS/AR D2: AVA ≤1 cm² with V_{max} <4 m/s or mean ΔP <40 mmHg; dobutamine stress echocardiography shows AVA ≤1 cm² with V_{max} ≥4 m/s at any flow rate D3: AVA ≤1 cm² with V_{max} <4 m/s or mean ΔP <40 mmHg AND stroke volume index <35 mL/m² measured in a normotensive patient 	Exertional dyspne angina, syncope o presyncope, heart failure, exercise intolerance

Abbreviations: AR indicates aortic regurgitation; AS aortic stenosis; AVA, aortic valve area circulation; AVAi, aortic valve area indexed to body surface area; LVEF, left ventricular ejection fraction; ΔP, pressure gradient between the left ventricle and aorta; and V_{max}, maximum velocity.

Otto, CM et al. 2020 ACC/AHA. Guideline for the Management of Patients With Valvular Heart Disease Circulation

Clinical Stage	Defi	Definition					
Α	At R	lisk					
в	Pro	gressive Mild/Moderate					
С	Asy	mptomatic Severe					
	C1	Normal LVEF≥50%					
	C2	Abnormal LVEF < 50%					
D	Sym	ptomatic Severe					
	D1	Severe High Gradient					
	D2	Low Flow/Low Gradient EF < 50%					
	D3	3 Low Flow/Low Gradient EF ≥ 50%					

LVEF 68%, peak velocity 4.5 m/s, mean gradient 54 mmHg, AVA 0.7cm2

No symptoms

Stage C1

Natural History of Asymptomatic Severe Aortic Stenosis treated conservatively

A All-cause death

Source	No. of deaths/ No. of patients	Death rate					
Pierri et al, ⁴¹ 2000	2/72	2.8 (0.7-11.1)					
Rosenhek et al, ⁴² 2000	8/239	3.4 (1.7-6.7)					
Pellikka et al, ⁵⁰ 2005	265/3359	7.9 (7.0-8.9)			_		
Weisenberg et al, ³⁷ 2008	5/295	1.7 (0.7-4.1)					
Hristova-Antova et al, ³⁵ 2009	1/90	1.1 (0.2-7.9)	-				
Rosenhek et al, ³⁴ 2010	9/396	2.3 (1.2-4.4)					
Cioffi et al, ³³ 2011	20/400	5.0 (3.2-7.8)	-				
Kitai et al, ³² 2011	9/418	2.2 (1.1-4.1)					
Perera et al, ³¹ 2011	9/73	12.3 (6.4-23.7)			_		
Lancellotti et al, ³⁰ 2012	9/338	2.7 (1.4-5.1)					
Yingchoncharoen et al, ²⁸ 2012	5/151	3.3 (1.4-7.9)					
Cho et al, ²⁷ 2013	0/52	0 (0-5.8)					
Jander et al, ²⁴ 2014	56/1523	3.7 (2.8-4.8)					
Levy et al, ²⁶ 2014	0/100	0 (0-3.0)	• <u> </u>				
Zuern et al, ²⁵ 2014	10/85	11.7 (6.3-21.8)			-		
Maréchaux et al, ²⁰ 2016	25/796	3.1 (2.1-4.6)					
Todaro et al, ²² 2016	8/109	7.3 (3.7-14.6)	_				
Christensen et al, ¹⁷ 2017	4/90	4.4 (1.7-11.8)		 			
González Gómez et al, ¹⁶ 2017	54/755	7.2 (5.5-9.3)					
Zilberszac et al, ¹⁸ 2017	15/167	9.0 (5.4-14.9)			-		
Suzuki et al, ¹⁴ 2018	25/139	18.0 (12.2-26.7)			-		-
Overall: τ ² = 0.29; 95% PI, 1.5-15	.5	4.8 (3.6-6.4)		5	10	15	

Death rate per 100 patients per y

20

B Cardiac death Source	No. of cardiac deaths/No. of patients	Death rate	
Rosenhek et al, ⁴² 2000	6/239	2.5 (1.1-5.6)	
Pellikka et al, ⁴⁰ 2005	117/3359	3.5 (2.9-4.2)	
Hristova-Antova et al, ³⁵ 2009	1/90	1.1 (0.2-7.9)	
Lafitte et al, ³⁶ 2009	2/60	3.3 (0.8-13.3)	
Rosenhek et al, ³⁴ 2010	6/396	1.5 (0.7-3.4)	-
Cioffi et al, ³³ 2011	16/400	4.0 (2.5-6.5)	
Lancellotti et al, ³⁰ 2012	8/338	2.4 (1.2-4.7)	_
Saito et al, ²⁹ 2012	20/309	6.5 (4.2-10.0)	
Yingchoncharoen et al, ²⁸ 2012	3/151	2.0 (0.6-6.1)	
Jander et al, ²⁴ 2014	34/1523	2.2 (1.6-3.1)	-
Levy et al, ²⁶ 2014	0/100	0 (0-3.0)	
Nagata et al, ²³ 2015	4/107	3.8 (1.4-10.0)	
Nishimura et al, ¹⁹ 2016	7/548	1.3 (0.6-2.7)	- B
Shibayama et al, ²¹ 2016	4/633	0.6 (0.2-1.7)	— —
Todaro et al, ²² 2016	8/109	7.3 (3.7-14.6)	
Christensen et al, ¹⁷ 2017	1/90	1.1 (0.2-7.8)	-
Zilberszac et al, ¹⁸ 2017	9/167	5.4 (2.8-10.4)	
Wu et al, ¹⁵ 2018	8/79	10.2 (5.1-20.4)	· · · · · · · · · · · · · · · · · · ·
Overall: τ ² = 0.24; 95% PI, 1.0-8.8		3.0 (2.2-4.1)	0 5 10 15 2

Gahl et al. JAMA Cardiol. 2020;5(10):1102-1112

UTSouthwestern Medical Center

Cardiac death rate per 100 patients per y

C HF death

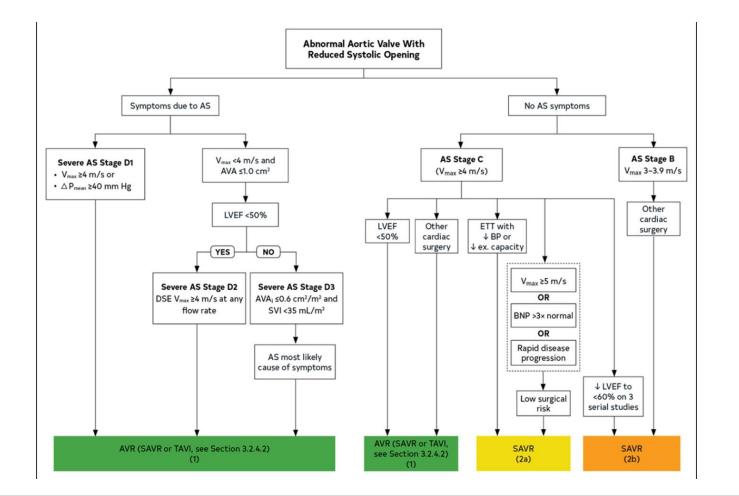
Source	No. of HF deaths/ No. of patients	Death rate				
Rosenhek et al, ⁴² 2000	4/239	1.7 (0.6-4.5)		_		
Pellikka et al, ⁵⁰ 2005	47/3359	1.4 (1.1-1.9)				
Rosenhek et al, ³⁴ 2010	5/396	1.3 (0.5-3.0)				
Cioffi et al, ³² 2011	16/400	4.0 (2.5-6.5)		—		
Lancellotti et al, ³⁰ 2012	5/338	1.5 (0.6-3.6)				
Saito et al, ²⁹ 2012	14/309	4.5 (2.7-7.7)				
Yingchoncharoen et al, ²⁸ 2012	2/151	1.3 (0.3-5.3)				
Levy et al, ²⁶ 2014	0/100	0 (0-3.0)				
Shibayama et al, ²¹ 2016	3/633	0.5 (0.2-1.5)				
Todaro et al, ²² 2016	3/109	2.7 (0.9-8.5)			-	
Zilberszac et al, ¹⁸ 2017	7/167	4.2 (2.0-8.8)			_	
Overall: τ ² =0.36; 95% PI, 0.5-8.4		2.0 (1.3-3.1)				
			0	5	10	15
HF indicates heart failure; PI, pred	iction interval.		HF de	eath rate	per 100 p	atients per y

D Sudden death	No. of sudden deaths/No. of						
Source	patients	Death rate					
Rosenhek et al, ⁴² 2000	1/239	0.4 (0.1-3.0)					
Amato et al, ⁶ 2001	4/81	4.9 (1.8-13.1)		-		_	
Pellikka et al, ⁵⁰ 2005	17/3359	0.5 (0.3-0.8)					
Avakian et al, ³⁸ 2008	7/439	1.6 (0.8-3.3)		_			
Rosenhek et al, ³⁴ 2010	1/396	0.3 (0.0-1.8)					
Cioffi et al, ³³ 2011	2/400	0.5 (0.1-2.0)					
Lancellotti et al, ³⁰ 2012	3/338	0.9 (0.3-2.8)	- -				
Saito et al, ²⁹ 2012	6/309	1.9 (0.9-4.3)					
Yingchoncharoen et al, ²⁸ 2012	1/151	0.7 (0.1-4.7)	-				
Levy et al, ²⁶ 2014	0/100	0 (0-3.0)					
Todaro et al, ²² 2016	5/109	4.6 (1.9-11.0)					
Christensen et al, ¹⁷ 2017	1/90	1.1 (0.2-7.8)	_ <u> </u>				
Overall: τ ² = 0.73; 95% PI, 0.1-8.5		1.1 (0.6-2.1)					
			Ó	5	10	15	
			Sudd	en death	rate per 100) patients p	oer y

Gahl et al. JAMA Cardiol. 2020;5(10):1102-1112

 Patients with asymptomatic severe aortic stenosis have deaths that are mostly cardiac but not only sudden

20



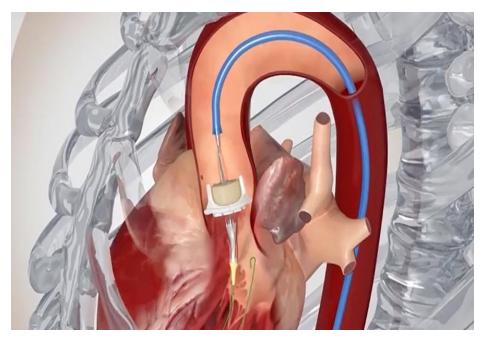
Goals of therapy

- -Alleviate symptoms
- -Reduce risk for heart failure
- -Prolong life

Aortic stenosis management guidelines

- LVEF 68%, peak velocity 4.5 m/s, mean gradient 54 mmHg, AVA 0.7cm2
- No planned cardiac surgery
- No class 1 indication for AVR

Risk stratification tools


Patient

- •No ETT : Degenerative OA hip
- ■BNP: < 3x ULN
- •6-month F/U: No significant echo changes, mild dyspnea with 1 mile walk
- TAVR performed

TAVR vs SAVR

TAVR

SAVR

TAVR vs SAVR

	Favors SAVR	Favors TAVI	Favors Palliation
Noncardiac conditions		 Severe lung, liver, or renal disease Mobility issues (high procedural risk with sternotomy) 	 Symptoms likely attributable to noncardiac conditions Severe dementia Moderate to severe involvement of ≥2 other organ systems
Frailty	Not frail or few frailty measures	 Frailty likely to improve after TAVI 	 Severe frailty unlikely to improve after TAVI
Estimated procedural or surgical risk of SAVR or TAVI	 SAVR risk low TAVI risk high 	 TAVI risk low to medium SAVR risk high to prohibitive 	 Prohibitive SAVR risk (>15%) or post-TAVI life expectancy <1 year
Procedure-specific impediments	 Valve anatomy, annular size, or low coronary ostial height precludes TAVI Vascular access does not allow transfemoral TAVI 	 Previous cardiac surgery with at-risk coronary grafts Previous chest irradiation 	 Valve anatomy, annular size, or coronary ostial height precludes TAVI Vascular access does not allow transfemoral TAVI

AV management

 Aortic balloon valvuloplasty is useful in congenital aortic stenosis but is of no value in older patients with calcific aortic stenosis.

Gloria.Ayuba@utsouthwestern.edu

