Cardiomyopathies

James MacNamara, MD

Institute for Exercise and Environmental Medicine

Learning Objectives

- Define Heart Failure With Reduced Ejection Fraction (HFrEF)
- Review ambulatory treatment strategies for HFrEF
- Identify specific causes of HFrEF:
 - Ischemic Cardiomyopathy
 - Dilated Cardiomyopathy
- Identify cardiomyopathies with preserved EF:
 - Hypertrophic Cardiomyopathy
 - Infiltrative Cardiomyopathy

Institute for Exercise and Environmental Medicine

Diagnostics: History

- Clinical Syndrome
- Impaired filling of blood into the ventricle
- Impaired ejection of blood from the ventricle
- Diverse, complex

BOX 31.2 Framingham Heart Failure Criteria

Framingham Heart Failure Criteria¹¹ Diagnosis of HF requires 2 major criteria OR 1 major and 2 minor criteria. **Major Criteria** Acute pulmonary edema Cardiomegaly Hepatojugular reflux Neck vein distention Paroxysmal nocturnal dyspnea or orthopnea Pulmonary rales Third heart sound (S₃ gallop rhythm) Weight loss > 4.5 kg in 5 days in response to treatment Minor Criteria Ankle edema Dyspnea on exertion Hepatomegaly Nocturnal cough Pleural effusion Tachycardia (HR > 120)

Diagnostics: The Physical Exam

- Peripheral Edema:
 - Dependent
- Pulmonary Edema
 - Rales/Crackles
- Ascites
- Orthopnea
- Jugular Venous Distention

Institute for Exercise and Environmental Medicine

Diagnostics: The Physical Exam

	Sensitivity _	_ Specificity
Physical examination		
Third heart sound (ventricular filling gallop) ^{36,41,43-45,48,53,56}	0.13	0.99
Abdominojugular reflux ³¹	0.24	0.96
Jugular venous distension ^{36,41,43-45,48,53,56}	0.39	0.92
Rales36,41,43-45,48,53,56	0.60	0.78
Anv murmur ^{36,44,48,53}	0.27	0.90
Lower extremity edema41,43-45,53,56	0.50	0.78
valsalva maneuver"	0.73	0.65
Systolic blood pressure <100 mm Ha ⁴⁸	0.06	0.97
Fourth heart sound (atrial gallop)36,48,53	0.05	0.97
Systolic blood pressure ≥150 mm Hg ⁴⁸	0.28	0.73
Wheezing ^{36,44,45,48,53}	0.22	0.58
Ascites ⁴⁸	0.01	0.97

Abbreviations: CI, confidence interval; LR, likelihood ratio.

*LRs are not independent of each other and should not be multiplied in series when multiple findings are considered.

Institute for Exercise and Environmental Medicine

Diagnostics: Chest X-ray

Institute for Exercise and Environmental Medicine

UTSouthwestern Medical Center

Texas Health Presbyterian Hospital

Next Steps

- Bedside history and exam are critical to identifying the presence of heart failure
- Limitation:
 - Why is the patient in heart failure?

Institute for Exercise and Environmental Medicine

Stages of Heart Failure

Figure 1. ACC/AHA Stages of HF.

The ACC/AHA stages of HF are shown. ACC indicates American College of Cardiology; AHA, American Heart Association; CVD, cardiovascular disease; GDMT, guideline-directed medical therapy; and HF, heart failure.

Institute for Exercise and Environmental Medicine

Stages of Heart Failure

Figure 1. ACC/AHA Stages of HF.

The ACC/AHA stages of HF are shown. ACC indicates American College of Cardiology; AHA, American Heart Association; CVD, cardiovascular disease; GDMT, guideline-directed medical therapy; and HF, heart failure.

Institute for Exercise and Environmental Medicine

Identifying Specific Cardiomyopathies

Institute for Exercise and Environmental Medicine

Presbyterian Hospital

Cardiac anatomy and echocardiography

End-Diastolic Volume

DALLAS

End-systolic Volume

UTSouthwestern Medical Center

DALLAS

Left Ventricular Stroke Volume

Presbyterian Hospital

DALLAS

Left Ventricular Ejection Fraction

- Stroke Volume: • SV = EDV - ESV
- Ejection Fraction • EF = SV/EDV * 100 • Normal is >52-55%
- Cardiac output: ullet• SV x Heart Rate

Medical Cente

Role of Ejection Fraction

2022 AHA/ACC/HFSA HF Guidelines Steinberg et al Circ 2012 Fexas Health Presbyterian Hospital

DALLAS

Institute for Exercise and Environmental Medicine

Role of Ejection Fraction

Institute for Exercise and Environmental Medicine

Texas Health Presbyterian Hospital

DALLAS

2022 AHA/ACC/HFSA HF Guidelines Steinberg et al Circ 2012

Cardiomyopathies

Reduced LVEF Systolic Dysfunction

- Dilated
 - Genetic
 - Toxin
 - Infectious
 - Peri-partum
 - Inflammatory
- Arrhythmogenic
- Ischemic

Preserved LVEF **Diastolic Dysfunction**

- Infiltrative
 - Amyloidosis
 - Iron
- Genetic
 - Hypertrophic
 - Storage diseases
- Sarcoidosis
- Metabolic ("HFpEF")

Institute for Exercise and Environmental Medicine

UTSouthwestern

Medical Cente

Texas Health

resbyterian Hospita

Dilated cardiomyopathy

Institute for Exercise and Environmental Medicine

Preserved LVEF

Table 2 Potential specific aetiologies underlying heart failure with preserved ejection fraction-like syndromes in Step 4 (F2) Abnormalities of the myocardium		Metabolic	Hormonal	Such as thyroid diseases, ^{107,108} parathyroid diseases, ¹⁰⁹ acromegaly, ¹¹⁰ GH deficiency, ¹¹¹ Cushing disease, ¹¹² Conn's disease, ¹¹³ Addison disease, ¹¹⁴ phaeochromocytoma, ¹¹⁵ pathologies related to preg-	
				nancy and peripartum ^{116,117}	
lschaemic		Myocardial post-infarction/scar ⁴⁹ Myocardial stunning ⁵⁰ Epicardial company artery disease ⁵¹		Nutritional	Such as deficiencies in thiamine, ¹¹⁸ L-carnitine, ¹¹⁹ selenium, ¹²⁰ (func- tional) iron, ^{121,122} complex malnutrition (e.g. AIDS, infections, ⁷³ anorexia nervosa ^{73,123,124})
Toxic	Recreational substance abuse	Microvascular and endothelial dysfunction ^{52,53–55}	Genetic	Diverse forms	Such as HCM, 97,125,126 restrictive cardiomyopathies, 103,104,106 hyper- trophic form of non-compaction cardiomyopathy,127,128 early forms of muscu-
- CARC	Heavy metals	Such as iron, ⁵⁹ lead, ⁶⁰ cadmium, ⁶⁰ cobalt, ⁶¹ copper (M. Wilson) ⁶²			lar dystrophies (Duchenne/Becker disease ¹²⁹).
	Medications	Such as chloroquine, ⁶³ ergotamine, ⁶⁴ cytostatic drugs (e.g. anthracy- clines) ⁶⁴ immunomodulating drugs (e.g. interferons monoclonal	Endomyocardial		HES, ⁶⁹ EMF, ^{71,127} endocardial fibroelastosis, ¹²⁸ carcinoid, ^{130,131} endo- cardial calcification (Paget's disease ¹³²)
		antibodies such as trastuzumab, cetuximab) ⁶⁴	Abnormalities of loading conditions		
	Radiation	Mean cardiac radiation doses > 3 Gy ^{65,66}	Hypertension		Primary and secondary forms of hypertension 112,113,115,130,131
Immune and inflammatory	Related to infection	Such as cardiotropic viruses, ^{67,68} HIV, ^{69–71} hepatitis, ⁷² helminths, ⁷³	Valvular and structural defects	Acquired	Heart valve diseases ^{133,134}
		parasites (e.g. Chagas' disease ⁷⁴)	Valvular and structural defects	Congenital	Septal defects ^{132,135,136}
	Not related to infection	Lymphocytic myocarditis, ^{75–79} autoimmune diseases (e.g. rheumatoid	Pericardial and endomyocardial pathologies	Pericardial	Constrictive pericarditis and pericardial effusion ^{137,138}
		arthritis, ⁸⁰ connective tissue disorders like scleroderma, ⁸¹		Endomyocardial	HES, ⁸⁶ EMF, ^{73,139} endocardial fibroelastosis, ¹⁴⁰ carcinoid, ^{141,142} endo-
		M. Raynaud, " systemic lupus erythematosus," dermato/polymyosi-	15 de contrato de terro		Cardial calcification (Paget's disease ***)
Infiltrative	Related to malignancy	tis, and hypersensitivity and eosinophilic myocarditis	High output states		severe anaemia, sepsis, thyrotoxicosis, artenovenous fis-
initiative	Not related to malignancy	Amyloidosis ^{19,91} sarcoidosis ^{92,93} primarily and secondary haemo-	Volume overload		Renal failure and fluid overload ^{148,149,150}
	Not reaced to marghancy	chromatosis. ^{94–96} storage diseases ⁹⁷ (e.g. Fabry disease ^{98,99} Danon	Abnormalities of the cardiac rhythm		
		disease, ^{100–102} Pompe disease, ^{99,102} PRKAG2 deficiency, ⁹⁹	Rhythm disorders		Atrial/ventricular arrhythmias, pacing, conduction disorders ^{38,151–153}
		Gaucher's disease ⁹⁹) ^{103,104,105,106}			,

EMF, endomyocardial fibrosis; GH, growth hormone; HCM, hypertrophic cardiomyopathy; HES, hypereosinophilic syndrome (formerly known as Löffler's endocarditis); HIV/ AIDS, human immunodeficiency virus/acquired immune deficiency; LV, left ventricular; PRKAG2, protein kinase AMP-activated non-catalytic subunit gamma 2.

Institute for Exercise and Environmental Medicine

Heart Failure in South Africa and Mozambique

Sarah M. Kraus et al. JACC Adv 2024:

Institute for Exercise and Environmental Medicine

Texas Health Presbyterian Hospital DALLAS

Cardiomyopathies for Today

- 1. Dilated
- 2. Hypertrophic
- 3. Arrhythmogenic
- 4. Restrictive
- 5. Ischemic

Institute for Exercise and Environmental Medicine

Dilated Cardiomyopathy

- Left ventricle is enlarged
- Systolic Dysfunction
 - LVEF < 50%
- Common in Africa:
 - 10-17% of all cardiac conditions
 - 17-48% of Heart Failure
- Male > Female
- 3^{rd} and 4^{th} decade of life
 - Can be any age

Dilated CM: ECGs

Institute for Exercise and Environmental Medicine

UTSouthwestern Medical Center

Texas Health Presbyterian Hospital

https://litfl.com/dilated-cardiomyopathy-dcm-ecg-library/

Dilated CM: ECGs

Institute for Exercise and Environmental Medicine

UTSouthwestern Medical Center

Texas Health Presbyterian Hospital

DALLAS

https://litfl.com/dilated-cardiomyopathy-dcm-ecg-library/

Dilated CM: ECGs

Institute for Exercise and Environmental Medicine

UTSouthwestern Medical Center

Texas Health Presbyterian Hospital

DALLAS

https://litfl.com/dilated-cardiomyopathy-dcm-ecg-library/

Dilated CM: X-ray

te for Exercise and Environmental Medicine

Dilated CM: Echocardiography

Dilated CM: Echocardiography

Texas Health Presbyterian Hospital

Dilated CM: Echocardiography

Institute for Exercis

Dilated DM: Etiology

- Prevalence of etiologies of DM in Africa is a major unmet need
- Consider:
 - Peri-partum (30%)
 - Last month or within 5 months of pregnancy
 - Myocarditis
 - Toxin
 - Alcohol and Thiamine
 - "Burned out" HF
 - Hypertension
 - Genetic
- Idiopathic

Institute for Exercise and Environmental Medicine

Management

Institute for Exercise and Environmental Medicine

Medical Management

- Renin-Angiotension
 Aldosterone system:
 - Sacubitril/Valsartan
 - ACE Inhibitor
 - Angiotensin Receptor Blocker
- Start low and maximize dose
- Caution: Hypotension

The Four Pillars of Heart Failure

Institute for Exercise and Environmental Medicine

Medical Management

- Beta Blocker:
 - UMortality
 - Metoprolol
 - Carvedilol
 - Concurrent Hypertension
 - Bisoprolol
- Start low, titrate to maximally tolerated dose
- Caution: Acutely Decompensated

The Four Pillars of Heart Failure

Texas Health

resbyterian Hospita

UTSouthwestern

Medical Cente

Medical Management

- Mineralocorticoid Receptor Antagonist
 - Spironolactone
 - Eplerenone
- 3rd agent
- Starting dose
 - 25mg daily
 - Increase to 50mg daily
- Caution: Kidney Disease, ↑K

The Four Pillars of Heart Failure

Institute for Exercise and Environmental Medicine

UTSouthwestern Medical Center

Texas Health

Medical Management

- Sodium-Glucose Cotransporter-2 Inhibitors
 - Empagliflozin
 - Dapagliflozin
 - Others
- New Agent
- Fixed dose
- Caution: Patient Access, Type 1 Diabetes, Urinary Tract Infections

The Four Pillars of Heart Failure

Institute for Exercise and Environmental Medicine

Medical Management

- ↓ vascular congestions and ↓ cardiac filling pressures
- \downarrow Morbidity and symptoms
- Loop Diuretics
 - Forsemide
 - Toresmide
 - Bumetanide
- Combination Diuretic Therapy
 - Loop + Thiazide

commendations for Diuretics and Decongestion Strategies in itients With HF eferenced studies that support the recommendations are immarized in the Online Data Supplements.		
COR	LOE	Recommendations

OR	LOE	Recommendations	
1	B-NR	 In patients with HF who have fluid retention, diuretics are recommended to relieve conges- tion, improve symptoms, and prevent worsen- ing HF.¹⁻⁸ 	
1	B-NR	 For patients with HF and congestive symptoms, addition of a thiazide (eg, metolazone) to treat- ment with a loop diuretic should be reserved for patients who do not respond to moderate- or high-dose loop diuretics to minimize electro- lyte abnormalities.⁶ 	

UTSouthwestern Medical Center

Texas Health

Dilated CM: Drugs to Avoid

Recommendations for Drugs of Unproven Value or Drugs That May Worsen HF Referenced studies that support the recommendations are summa- rized in the Online Data Supplements.				
COR	LOE	Recommendations		
3: No Benefit	А	 In patients with HFrEF, dihydropyridine calcium channel-blocking drugs are not recommended treatment for HF.^{1,2} 		
3: No Benefit	B-R	 In patients with HFrEF, vitamins, nutritional supplements, and hormonal therapy are not recommended other than to correct specific deficiencies.³⁻⁹ 		
3: Harm	А	 In patients with HFrEF, nondihydropyridine calcium channel-blocking drugs are not recom- mended.¹⁰⁻¹³ 		
3: Harm	А	 In patients with HFrEF, class IC antiarrhythmic medications and dronedarone may increase the risk of mortality.^{14–16} 		
3: Harm	А	 In patients with HFrEF, thiazolidinediones increase the risk of worsening HF symptoms and hospitalizations.^{17–21} 		
3: Harm	B-R	 In patients with type 2 diabetes and high cardiovascular risk, the dipeptidyl pepti- dase-4 (DPP-4) inhibitors saxagliptin and alogliptin increase the risk of HF hospitaliza- tion and should be avoided in patients with HF.²²⁻²⁴ 		
3: Harm	B-NR	 In patients with HFrEF, NSAIDs worsen HF symptoms and should be avoided or withdrawn whenever possible.²⁵⁻²⁸ 		

Institute for Exercise and Environmental Medicine

Implantable Cardiac DefibrialItor

Recommendations for ICDs and CRTs Referenced studies that support the recommendations are summarized in the Online Data Supplements.

COR	LOE	Recommendations	
1	A	 In patients with nonischemic DCM or ischemic heart disease at least 40 days post-MI with LVEF ≤35% and NYHA class II or III symp- toms on chronic GDMT, who have reasonable expectation of meaningful survival for >1 year, ICD therapy is recommended for primary pre- vention of SCD to reduce total mortality.¹⁻⁹ 	
Value Statement: High Value (A)		2. A transvenous ICD provides high economic value in the primary prevention of SCD particularly when the patient's risk of death caused by ventricular arrythmia is deemed high and the risk of nonarrhythmic death (either cardiac or noncardiac) is deemed low based on the patient's burden of comorbidities and functional status. ¹⁰⁻¹⁵	

LVEF <35% despite GDMT

Institute for Exercise and Environmental Medicine

Cardiac Re-synchronization Therapy

1	B-R	4. For patients who have LVEF ≤35%, sinus rhythm, left bundle branch block (LBBB) with a QRS duration ≥150 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT, CRT is indicated to reduce total mortality, reduce hospi- talizations, and improve symptoms and QOL. ^{16–21}	
Value Statement: High Value (B-NR)		 For patients who have LVEF ≤35%, sinus rhythm, LBBB with a QRS duration of ≥150 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT, CRT implantation pro- vides high economic value.²²⁻²⁷ 	

1.LBBB 2.LVEF <35% 3.Symptoms

Institute for Exercise and Environmental Medicine

Therapies Works in HFrEF

Table 15. Benefits of Evidence-Based Therapies for Patients With HFrEF^{3-6,8,10-14,23,31-42}

Evidence-Based Therapy	Relative Risk Reduction in All-Cause Mortality in Pivotal RCTs, %	NNT to Prevent All-Cause Mortality Over Time*	NNT for All-Cause Mortality (Standardized to 12 mo)	NNT for All- Cause Mortality (Standardized to 36 mo)
ACEi or ARB	17	22 over 42 mo	77	26
ARNit	16	36 over 27 mo	80	27
Beta blocker	34	28 over 12 mo	28	9
Mineralocorticoid receptor antagonist	30	9 over 24 mo	18	6
SGLT2i	17	43 over 18 mo	63	22
Hydralazine or nitrate‡	43	25 over 10 mo	21	7
CRT	36	12 over 24 mo	24	8
ICD	23	14 over 60 mo	70	23

ACEi indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNi, angiotensin receptor neprilysin inhibitor; CRT, cardiac resynchronization therapy; HFrEF, heart failure with reduced ejection fraction; ICD, implantable cardioverter-defibrillator; NNT, number needed to treat; RCT, randomized controlled trial; and SGLT2i, sodium-glucose cotransporter-2 inhibitor.

Hypertrophic Cardiomyopathy

Institute for Exercise and Environmental Medicine

Texas Health Presbyterian Hospital

Hypertrophic Cardiomyopathy

- Thickening of the heart muscle
 - Acquired
 - Hypertensive Heart Disease
 - Kidney Disease
 - Valve Disease
 - Genetic
- Common:
 - 34% of Cardiomyopathies in Ethiopia
 - 3rd most common CM in Ghana, S Africa or Mozambique

Acquired vs Famlial

Hypertensive Heart Disease

- No specific inheritance pattern
 - Can still "Run in families"

Hypertrophic Cardiomyopathy

- Autosomal Dominant
 - Genetic Disease of the Sarcomere
 - Many patients are first in their family (new mutations)

Institute for Exercise and Environmental Medicine

Acquired vs Famlial

Hypertensive Heart Disease

- No specific inheritance
 pattern
 - Can still "Run in families"
- Symmetric hypertrophy

Hypertrophic Cardiomyopathy

- Autosomal Dominant
 - Genetic Disease of the Sarcomere
 - Many patients are first in their family (new mutations)
- Asymmetric Hypertrophy

Institute for Exercise and Environmental Medicine

Acquired vs Famlial

Hypertensive Heart Disease

- No specific inheritance
 pattern
 - Can still "Run in families"
- Symmetric hypertrophy
- Older patients
 - 6th-7th decade of life in Nigerian Cohort

Hypertrophic Cardiomyopathy

- Autosomal Dominant
 - Genetic Disease of the Sarcomere
 - Many patients are first in their family (new mutations)
- Asymmetric Hypertrophy
- Younger patients
 - 4-6th decade of life in southern Africa

Institute for Exercise and Environmental Medicine

UTSouthwestern

Texas Health

Institute for Exercise and Environmental Medicine Texas Health
Presbyterian Hospital
UT Southwestern
Medical Center

HCM: ECG of Apical HCM

Left Ventricular Hypertrophy

Institute for Exercise and Environmental Medicine

UTSouthwestern Medical Center

Texas Health Presbyterian Hospital

DALLAS

https://litfl.com/hypertrophic-cardiomyopathy-hcm-ecg-library/

rcise and Environmental Medicine

UTSouthwestern Medical Center

Hospita

Institute for Exercise and Environmental Medicine

UTSouthwestern

Medical Center

Texas Health Presbyterian Hospit

DALLAS

Presbyterian Hospital

HCM: Management

Circulation

CLINICAL PRACTICE GUIDELINES

2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines

Developed in Collaboration With and Endorsed by the American Medical Society for Sports Medicine, the Heart Rhythm Society, Pediatric & Congenital Electrophysiology Society, and the Society for Cardiovascular Magnetic Resonance

Writing Committee Members*

Steve R. Ommen, MD, FACC, FAHA, Chair; Carolyn Y. Ho, MD, FAHA, Vice Chair; Irfan M. Asif, MD, FAMSSM†; Seshadri Balaji, MBBS, MRCP(UK), PhD, FHRS‡; Michael A. Burke, MD; Sharlene M. Day, MD, FAHA; Joseph A. Dearani, MD, FACC; Kelly C. Epps, MD, FACC; Lauren Evanovich, PhD§; Victor A. Ferrari, MD, FACC, FAHA, MSCMRI¶; José A. Joglar, MD, FACC, FAHA, FHRS; Sadiya S. Khan, MD, MSc, FACC, FAHA#; Jeffrey J. Kim, MD, FACC, FHRS**; Michelle M. Kittleson, MD, PhD, FAHA, FACCI; Chayakrit Krittanawong, MD††; Matthew W. Martinez, MD, FACC; Seema Mital, MD, FACC, FAHA; Srihari S. Naidu, MD, FACC, FAHA; Sara Saberi, MD, MS; Christopher Semsarian, MBBS, PhD, MPH, FHRS, FAHA; Sabrina Times, DHSC, MPH‡‡; Cynthia Burstein Waldman, JD§

Institute for Exercise and Environmental Medicine

HCM: Management

- Goal is to reduce obstruction
- Chronotropic Agents:
 - Beta blockers, Verapamil, Diltiazem
 - Lowers heart rate, increases EDV, decreases obstruction
- Septal Reduction Therapy
 - Surgical Myectomy
 - Alcohol Septal Ablation
 - Requires technical expertise
 - Patient access is a major problem

Recommendations for Pharmacological Management of Symptomatic Patients With Obstructive HCM Referenced studies that support the recommendations are summarized in the Online Data Supplement.			
COR	LOE	Recommendations	
1	B-NR	 In patients with obstructive HCM and symptoms* attributable to LVOTO, nonvasodilating beta blockers, titrated to effectiveness or maximally tolerated doses, are recommended.^{1–3} 	
1	B-R	3. For patients with obstructive HCM who have persistent symptoms* attributable to LVOTO despite beta blockers or nondihydropyridine calcium channel blockers, adding a myosin inhibitor (adult patients only), or disopyramide (in combination with an atrioventricular nodal blocking agent), or SRT performed at experienced centers,§ is recommended. ⁷⁻¹⁴	

HCM: Risk of Sudden Cardiac Death

- Some patients with HCM are higher risk for sudden cardiac death
 - Ventricular Tachycardia and ventricular fibrillation
- No medical treatment
- ICD is indicated for high risk patients
- NOT for hypertensive heart disease with LVEF >35%

UTSouthwestern

Medical Cente

Texas Health

Presbyterian Hospita

Hypertensive Heart Disease

- If LVEF >50%:
 - Treat blood pressure
 - Diuretics as needed
 - SGLT-2i
 - Exercise
- If LVEF <50%L
 - Treat with HFrEF GDMT

Institute for Exercise and Environmental Medicine

Quick Hitters

Arrhythmogenic, Restrictive, and Ischemic

Institute for Exercise and Environmental Medicine

ARCV: Arrhythmogenic Right Ventricular Cardiomyopathy

- 2nd most common CM in some parts of Africa
- Genetic condition
 - 25% PKP2
- Male > Female
- 3rd decade of life
- 5 year mortality is 10% in South African registry

Institute for Exercise and Environmental Medicine

UTSouthwestern

Medical Cente

Texas Health

resbyterian Hospita

ARCV: Symptoms

- Asymptomatic in early stages
- Syncope
- Palpitations
- Shortness of breath
- Fatigue

- Diagnosed:
 - ECG
 - Echo
 - Genetic Testing
 - Family History

Institute for Exercise and Environmental Medicine

ARCV: ECG

Institute for Exercise and Environmental Medicine

UTSouthwestern Medical Center

Texas Health Presbyterian Hospital

DALLAS

https://litfl.com/arrhythmogenic-right-ventricular-dysplasia-arvd/

ARCV: ECG

Institute for Exercise and Environmental Medicine

UTSouthwestern Medical Center

Fexas Health Presbyterian Hospital

V1

https://litfl.com/arrhythmogenic-right-ventricular-dysplasia-arvd/

ARCV: Echocardiogram

Institute for Exercise and Environmental Medicine

ARCV: MRI is best modality

Institute for Exercise and Environmental Medicine

ARCV: MRI is best modality

Institute for Exercise and Environmental Medicine

ARCV: Management

Krahn AD, et al. J Am Coll Cardiol EP. 2022;8(4):533-553.

Institute for Exercise and Environmental Medicine

Restrictive Cardiomyopathies

- Endomyocardial fibrosis is very common
 - 2nd most common CM in central Africa (20%)
- Davie's Disease
- Response to treatment is
 poor
 - Mortality in high: 75% at 2 years
- Cause remains elusive

Institute for Exercise and Environmental Medicine

UTSouthwestern

Texas Health

Infiltrative Cardiomyopathies: Amyloid

- Amyloidosis:
 - Deposition of protein in the myocardium
 - Restrictive cardiomyopathy
 - Can progress to dilated
- Hereditary Type:
 - aTTR is found in Americans of African descent
 - Prevalence in Africa is unknown

ECG with low voltage

Institute for Exercise and Environmental Medicine

UT Southwestern Medical Center

Texas Health

Infiltrative Cardiomyopathies: Amyloid

te for Exercise and Environmental Medicine

Ischemic Cardiomyopathy

- Sequalae of myocardial infarction or long-standing coronary artery disease
- Most common type in the United States
- Remains uncommon in Africa
 - Risk Factors are rising:
 - Diabetes, obesity, hypertension, smoking

Institute for Exercise and Environmental Medicine

Ischemic Cardiomyopathy

Inferior Q waves, old myocardial infarction

Institute for Exercise and Environmental Medicine

Ischemic Cardiomyopathy

ite for Exercise and Environmental Medicine

Texas Health Presbyterian Hospital
Ischemic Cardiomyopathy

Institute for Exercise and Environmental Medicine

UTSouthwestern Medical Center

ICM: Management

- Treat with GDMT for HFrEF if LVEF is <50%
- Consider ICD or CRT if
 indicated
- In US, recommend coronary evaluation of all patients where ICM is possible
 - Coronary Angiogram or CT coronary angiogram

6. HF is often caused by coronary atherosclerosis,⁷⁹ and evaluation for ischemic heart disease can help in determining the presence of significant coronary artery disease (CAD). Noninvasive stress imaging with echocardiography or nuclear scintigraphy can be helpful in identifying patients likely to have obstructive CAD.^{24,25} Invasive or computed tomography coronary angiography can detect and characterize extent of CAD.^{26,27}

Conclusions

- 1. Cardiomyopathies are common and complex heart conditions in Africa
- 2. Physical exam, history and bedside tests are effective at diagnosing syndrome of heart failure
- 3. Cardiac Imaging is needed to characterize the cardiomyopathy
- 4. Etiologies of cardiomyopathies are diverse
- 5. Different cardiomyopathies have distinct treatment pathways

Institute for Exercise and Environmental Medicine