

UTSouthwestern Medical Center

Cardiogenic Shock Principles & Case Based Education

Nick Hendren, MD
Advanced Heart Failure & Transplant Cardiologist
Medical Director of Heart Failure at Parkland Health
University of Texas Southwestern Medical Center

Outline

Cardiogenic shock definitions

Cardiogenic shock fundamentals

Scales (SCAI vs INTERMACs)

Demographics & Outcomes

Management

Question 1

A 35-year-old woman with a history of moderate-to-severe mitral stenosis presents with worsening shortness of breath, sinus tachycardia (HR 140 bpm), and a blood pressure of 150/80 mmHg. She is noted to have an acute kidney injury (creatinine 1.0 --> 2.5), elevated lactate and elevated liver function tests (previously normal). An echocardiogram is notable for normal right and left ventricular systolic function with significant mitral stenosis. The *most appropriate immediate management* of her cardiogenic shock includes:

- A. Intravenous diuretics and therapeutic anticoagulation
- B. Intravenous diuretics and ACE-inhibitor administration
- C. Intravenous diuretics and hydralazine administration
- D. Intravenous diuretics and beta-blocker administration
- E. ACE-inhibitor administration and beta-blocker administration

Question 2

A 45-year-old man with a history of CAD with myocardial infarction and ischemic cardiomyopathy presents with several days of lower extremity swelling, shortness of breath, chest pain and vomiting. At rest, he appears unwell, tachypneic (respiratory rate >20 breaths/minute), tachycardic (130 bpm) and hypotensive (BP 75/50). His labs are notable for a lactic acidosis, acute kidney injury and elevated liver function tests. A point of care cardiac ultrasound is notable for a left ventricular fraction <20%. An ECG does not demonstrate ST elevation or depression. The **most appropriate immediate management** of her cardiogenic shock includes:

- A. Initiation of dobutamine and beta-blocker administration
- B. Initiation of dobutamine and intravenous diuretics
- C. Initiation of milrinone and intravenous diuretics
- D. Intravenous diuretics and ACE-inhibitor administration
- E. Intravenous diuretics and beta-blocker administration

Outline

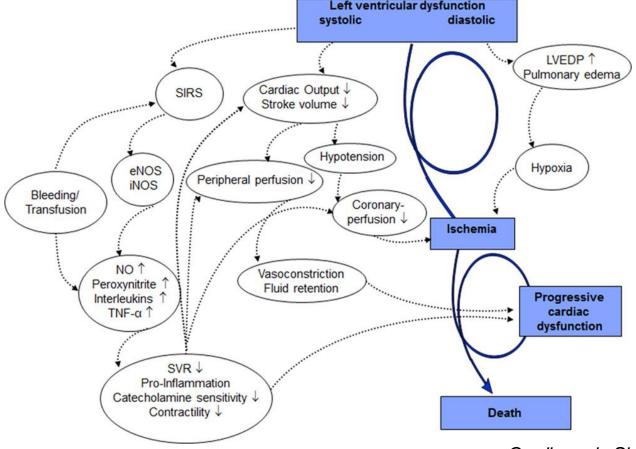
Cardiogenic shock definitions

Cardiogenic shock fundamentals

Scales (SCAI vs INTERMACs)

Demographics & Outcomes

Management



Cardiogenic Shock Definition

Physiologic definition: reduced cardiac output resulting in inadequate tissue perfusion, often with elevated intravascular filling pressures, resulting in end-

organ injury.

Cardiogenic Shock Definition

Table 1. Pragmatic and Clinical Trial Definitions of CS (Table view)

Clinical Definition	SHOCK Trial ⁹ *	IABP-SHOCK II ¹ †	ESC HF Guidelines ¹⁵
Cardiac disorder that results in both clinical and biochemical evidence of tissue hypoperfusion	Clinical criteria: SBP <90 mm Hg for ≥30 min OR Support to maintain SBP ≥90 mm Hg AND End-organ hypoperfusion (urine output <30 mL/h or cool extremities)Hemodynamic criteria: CI of ≤2.2 L·min ⁻¹ ·m ⁻² AND PCWP ≥15 mm Hg	Clinical criteria: SBP <90 mm Hg for ≥30 min OR Catecholamines to maintain SBP >90 mm Hg AND Clinical pulmonary congestion AND Impaired end- organ perfusion (altered mental status, cold/clammy skin and extremities, urine output <30 mL/h, or lactate >2.0 mmol/L)	SBP <90 mm Hg with adequate volume and clinical or laboratory signs of hypoperfusionClinical hypoperfusion: Cold extremities, oliguria, mental confusion, dizziness, narrow pulse pressureLaboratory hypoperfusion: Metabolic acidosis, elevated serum lactate, elevated serum creatinine

Cardiogenic Shock Definition

Clinical trial definition: Cardiac index <1.8 (or <2.0 with support), LVEDP >18, and systolic blood pressure <90 mmHg for >30 minutes.

Limitations (many):

Not a sensitive definition

Acute pathology is more likely present with hypotension

Patients on GDMT more likely to be hypotensive

There is no blood pressure that a patient cannot be in cardiogenic shock

*Note elevated lactate is <u>NOT</u> necessary

There is no comprehensive definition of cardiogenic shock

Management – Physical Exam

Congestion

Estimated PCWP ≥22 mmHg

+

Profile A Profile B Dry-Warm Wet-Warm Normal perfusion & Normal perfusion & **Perfusio** hemodynamically compensated hemodynamically congested .2 L/min/m² + Adjust oral therapies Diuretics Consider alternative causes for Adjust vasodilators symptoms 22 Profile L Profile C Cardiac Index Adequate Dry-Cold Wet-Cold Abnormal perfusion & Abnormal perfusion & normal hemodynamically congested filling pressures SBP <90 mmHg or SBP >90 mmHg & Normal lactate Abnormal lactate Adjust vasodilators +/- inotropes Diuretics Diuretics Consider digoxin & cardiac Adjust vasodilators Adjust vasodilators resynchronization therapy +/- Inotropes Inotropes

Cardiogenic shock – Physical Exam

Table 2: Utility of Clinical Exam Findings in ADHF

	Exam Finding	Sensitivity	Specificity	PPV	NPV	(+) LR	(-) LR
Perfusion*	S3 Gallop	62	32	61	33	0.92	0.85
	SBP <100 mmHg	42	66	77	29	1.24	1.14
	PPP <25%	10	96	88	28	2.54	1.07
	Cool Extremities	20	88	82	28	1.68	1.10
	"Cold" Profile	33	86	87	32	2.33	1.28
Congestion**	Ascites	21	92	81	40	2.44	1.15
	Rales >1/3	15	89	69	38	1.32	1.04
	Edema >2+	41	66	67	40	1.20	1.11
	Orthopnea >2 pillows	86	25	66	51	1.15	1.80
	JVP >12 mmHg	65	64	75	52	1.79	1.82
	HJR	83	27	65	49	1.13	1.54

^{*}Cardiac index <2.2 L/min/m².

Abbreviations: HJR, hepatojugular reflux; JVP, jugular venous pressure; LR, likelihood ratio; NPV, negative predictive value; PPP; proportional pulse pressure; PPV, positive predictive value; SBP, systolic blood pressure. Adapted with permission from Drazner et al. *Value of clinician assessment of hemodynamics in advanced heart failure: the ESCAPE trial.* Circ Heart Fail. 2008;1(3):170-7.

^{**}Pulmonary capillary wedge pressure >22 mmHg.

Clinical Diagnosis of Cardiogenic Shock

$MAP - RAP = CO \times SVR$

Abnormal cardiac function (e.g., severe valvular disease, reduced systolic dysfunction, etc.)

Cardiac congestion – elevated left and/or right heart filling pressures (e.g., CXR with congestion, etc.)

Evidence of inadequate cardiac output – acute liver injury, acute kidney injury, elevated lactate, nausea, altered mental status, low central venous/PA saturation (at least 2)

^t Hypotension, sinus tachycardia, narrow pulse pressure

**Cardiac index <2.1 L/min/m²

*MAP, mean arterial pressure; RAP, right atrial pressure; CO, cardiac output; SVR systemic vascular resistance. ^L Supportive of shock, but not mandatory.

Classic Hemodynamics of Cardiogenic Shock

$MAP - RAP = CO \times SVR$

	PCWP	СО	SVR
Distributive (septic, neurogenic)	•	1	•
Cardiogenic	1	•	1
Hemorrhagic	-	•	1

Reality:

BP 140/120 (126); JVP 20 mmHg \rightarrow (126-20)/(3.5 L/min) = 2420

BP 75/50 (58); JVP 20 mmHg \rightarrow (58-20)/(3.5 L/min) = 870

*ACEi/ARB/ARNI; obesity, liver disease, sepsis, advanced (deep) shock

Outline

Cardiogenic shock definitions

Cardiogenic shock fundamentals

Scales (SCAI vs INTERMACs)

Demographics & Outcomes

Management

Fundamentals

Support the body

Optimize cardiac hemodynamics

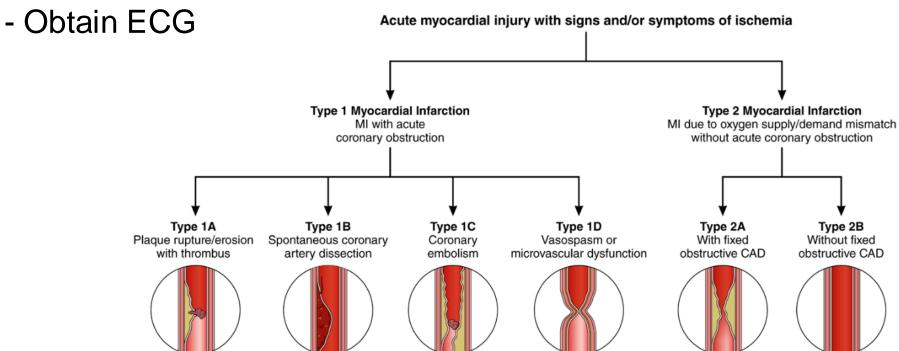
Optimize Coronary Flow

Maintain MAP
Maintain body perfusion
Vasopressors & inotropes
MCS

Diuretics versus fluids Vasopressors, inotropes MCS if necessary

PCI/tPA if necessary

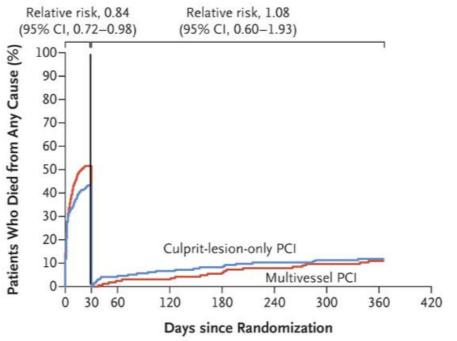
Correct recipe depends on the patient in front of you (e.g. ACS vs critical AS vs ADHF)



Optimize coronary flow

All patients with cardiogenic shock should be assessed for an acute coronary syndrome (e.g., STEMI, NSTEMI)

- Trend troponin
- Assess for clinical symptoms of a myocardial infarction


Optimize coronary flow

Coronary revascularization for STEMI or NSTEMI in shock

STEMI or NSTEMI

- Urgent revascularization of culprit lesion or tPA
- Address remaining lesions electively

B Landmark Analysis

CULPRIT SHOCK

N=706
Culprit-only PCI versus
multivessel PCI

Support the body

MAP target – generally 65-80 mmHg

- If >80 mmHg consider oral/IV reduction
- If <65 mmHg add vasoactive mediations

 $MAP - RAP = CO \times SVR$

Cardiac output – general goal >2.0 L/min/m² Inotropes Mechanical support

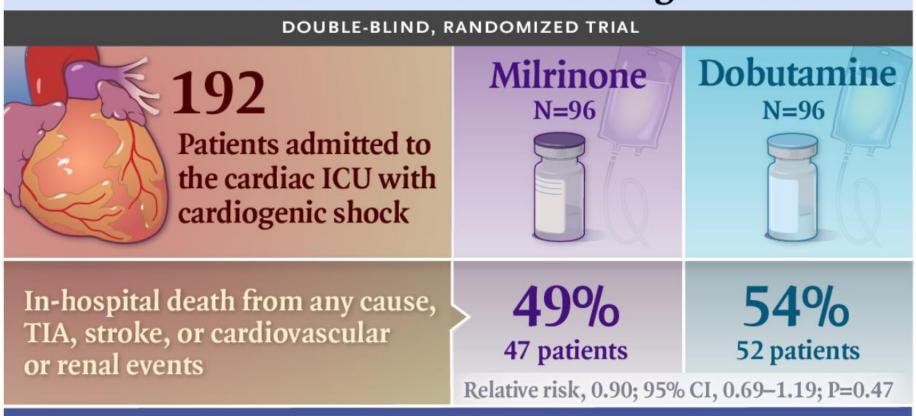
Oxygen delivery (Fick equation)

Goal hemoglobin >7 g/dL (>8 if NSTEMI/STEMI)

Goal SPO2 >90% or PO2 80-120 (higher may be worse with myocardial infarction)

Adequate cardiac output (general goal >2.0 L/min/m²)

Support the body – Inotropes


	Perks	Limits
Dobutamine	Mixed clearance Mild SVR reduction	Proarrhythmic
Milrinone	PVR & SVR reducing 8-hour half-life Concomitant BB use	Renal clearance May cause hypotension Proarrhythmic
Epinephrine	Supports SVR & CO	Proarrhythmic
Dopamine	Supports SVR & CO	Proarrhythmic
Nitroprusside	No increased mortality Very short half-life Not proarrhythmic	Requires ICU care Limited use in advanced CKD Coronary steal

Support the body - Inotrope

Milrinone vs. Dobutamine in Cardiogenic Shock

No between-group difference was observed in the primary composite outcome or in important secondary outcomes.

Support the body – Inotrope

End Point ^a	Milrinone (n=96)	Dobutamine (n=96)	Relative risk (95% CI)
Arrhythmia requiring medical team intervention ^b	48 (50%)	44 (46%)	1.09 (0.81-1.47)
Atrial arrhythmia requiring medical team intervention	43 (45%)	36 (38%)	1.19 (0.85-1.68)
Ventricular arrhythmia ^c	14 (15%)	17 (18%)	0.82 (0.43-1.57)
Need for oral or intravenous anti-arrhythmic therapy	43 (45%)	41 (43%)	1.05 (0.76-1.45)
Need for up-titration or addition of vasopressor therapy	94 (98%)	93 (97%)	1.01 (0.97-1.06)
Sustained hypotension with systolic blood pressure less than 90mmHg for at least 30 minutes or requiring	96 (100%)	96 (100%)	-
intervention			

a- Values are reported as no. (%). All analyses performed using the intention-to-treat principle. CI denotes confidence interval.

b- Defined as electrical/chemical cardioversion or any intravenous anti-arrhythmia medication administration

c- Defined as monomorphic or polymorphic ventricular tachycardia greater than 30 seconds, or hemodynamically unstable ventricular arrhythmia requiring intervention, or ventricular fibrillation

Support the body – Mechanical Support

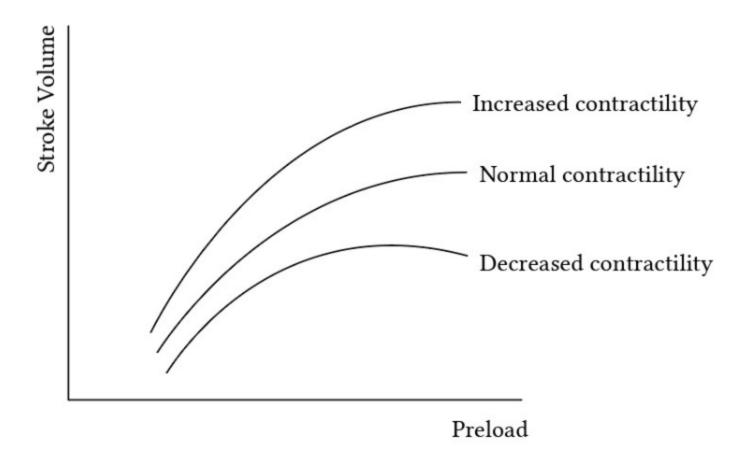
	Inotrope	IABP	Impella	VA-ECMO
Cardiac Output	0.5-1.0 L/min	0.5-1.0 L/min	2.5-5.0 L/min	3-6 L/min
Myocardial oxygen demand	Increase	Decrease	Decrease	Increase
LV unloading	Yes	Yes	Yes	No
Complication Rate	**	**	***	****
Cost	\$	\$	\$\$\$\$	\$\$\$

Optimize cardiac hemodynamics

Cardiac output = heart rate x stroke volume

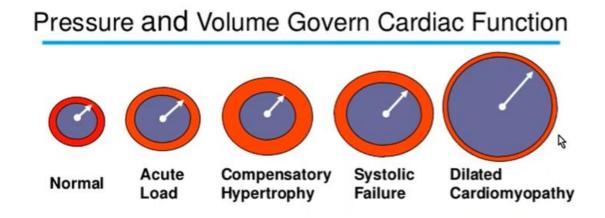
Cardiac filling pressures

Heart rate


Stroke volume – severe valvular lesions

Frank-Starling Relationship

Left ventricular end-diastolic pressure (PCWP) [Preload]



Frank-Starling Relationship

Left ventricular end-diastolic pressure (PCWP) [Preload]

La Place law of the heart

La Place law for myocardial O2 demand

 $VO_2 \propto wall tension$

Cardiac filling pressures

Left ventricular end-diastolic pressure (PCWP) [Preload]

Normal <12 mmHg

Dilated cardiomyopathy 10-18 mmHg

Restrictive cardiomyopathy 15-20 mmHg

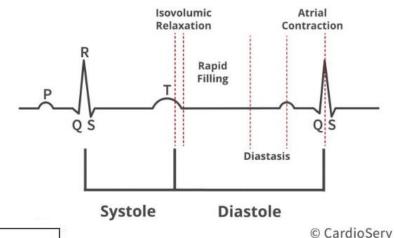
Severe aortic stenosis 15-20 mmHg

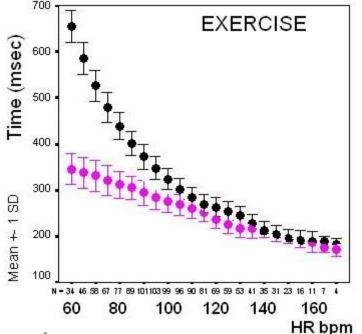
Right ventricular end-diastolic pressure (CVP)

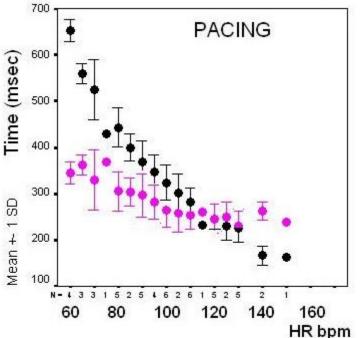
Normal <8 mmHg

Goal 5-10 mmHg

Use diuretics and blood pressure control to achieve goals




Medical Center


Optimize cardiac hemodynamics – heart rate

Faster heart rate = less diastolic filling time

Good for severe aortic regurgitation Bad for severe mitral stenosis

Black = Diastolic filling time
Pink = Systolic filling time

Optimize cardiac hemodynamics – heart rate

Goal heart rate in shock – 70-120 bpm in sinus rhythm

Cardiogenic Shock Patients - Concepts

Acute Problems:

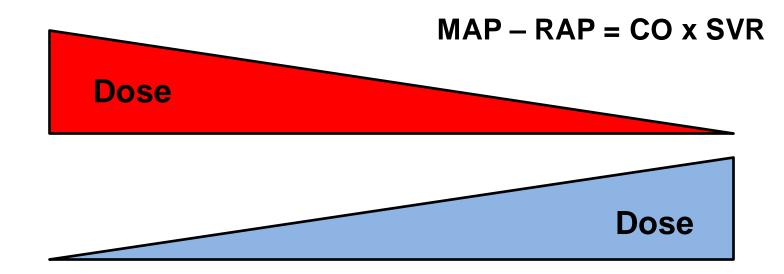
Myocardial infarction (STEMI, NSTEMI)
Acute AR or MR
Myocarditis (viral, chemotherapy)
Stress cardiomyopathy

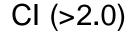
Cardiac Index: 3.0 → 1.8 (60%)

Acute on Chronic Problems:

Systolic heart failure Chronic AS or MS Chronic AR or MR

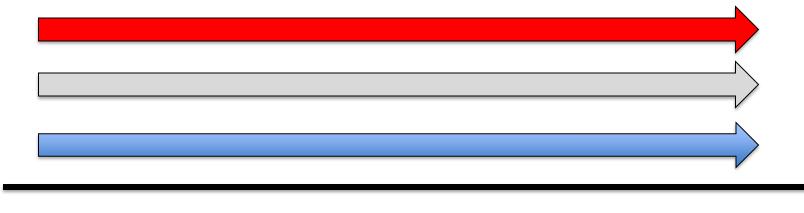
Cardiac Index: 2.0 → 1.8 (90%)




UTSouthwestern Medical Center

Concepts – Weaning Inotropes

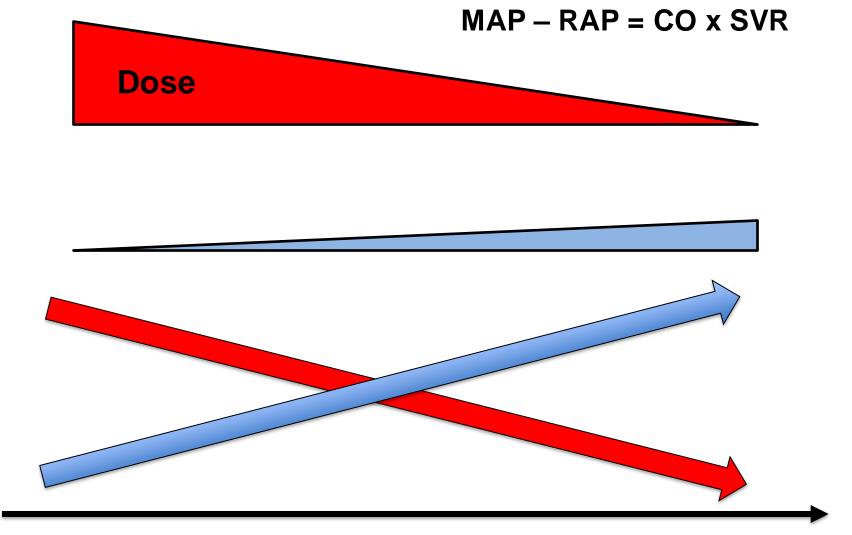
Dobutamine, milrinone, or nitroprusside


> ACEi, ARB or hydralazineisosorbide

MAP (>65)

SVR

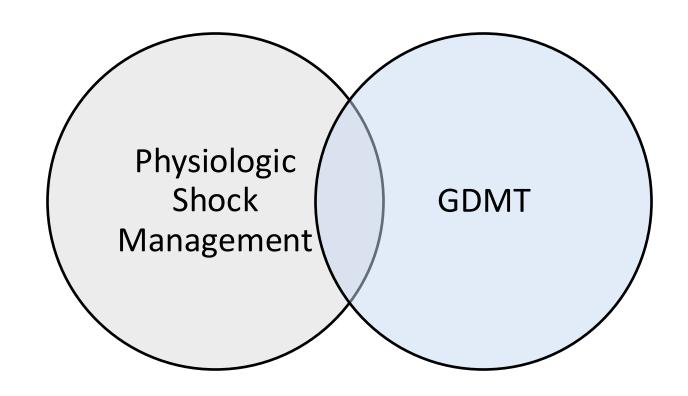
Concepts – Weaning Inotropes


Dobutamine, milrinone, or nitroprusside

ACEi, ARB or hydralazine-isosorbide

CI (>2.0)

MAP (>65)


SVR

Concepts – Weaning Inotropes

Outline

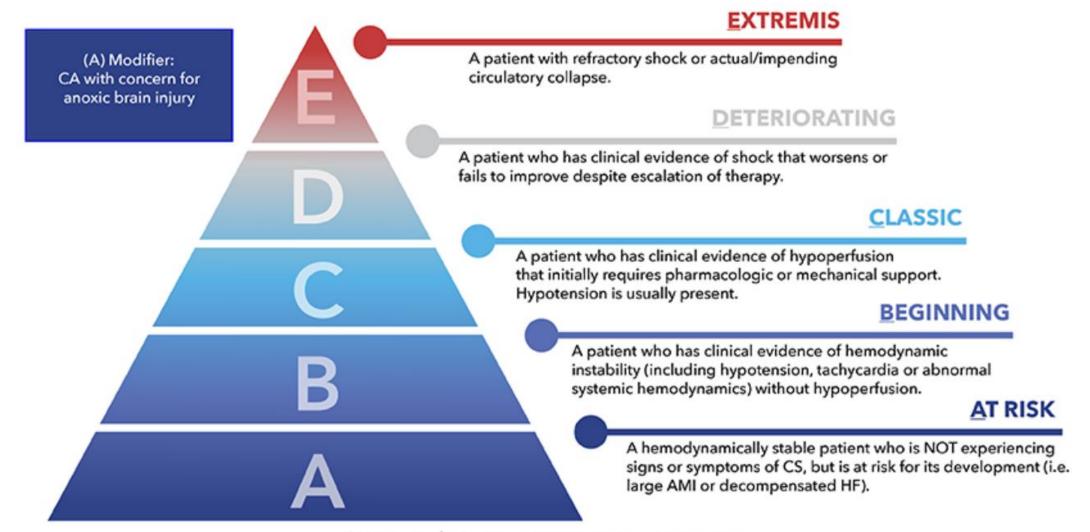
Cardiogenic shock definitions

Cardiogenic shock fundamentals

Scales (SCAI vs INTERMACs)

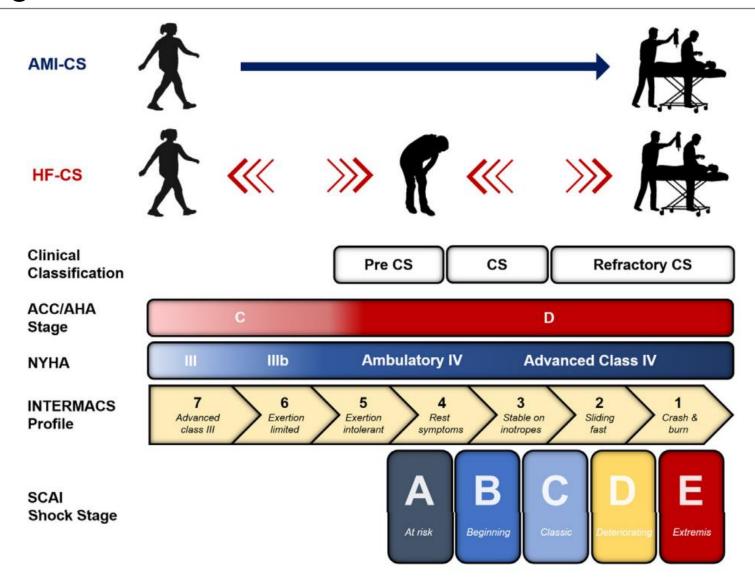
Demographics & Outcomes

Management


INTERMACs Stages of Shock

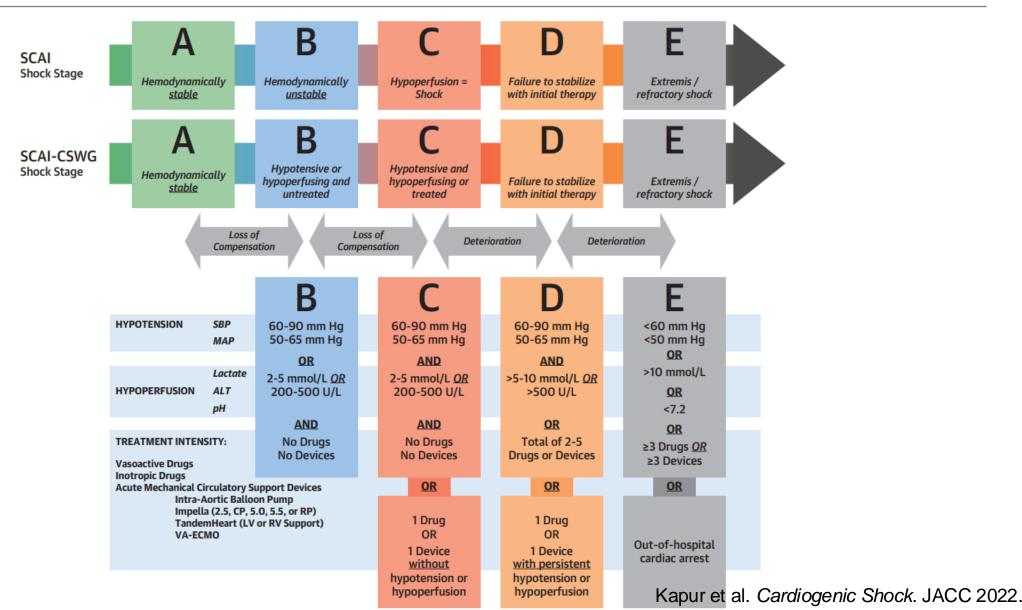
		Temporary circulatory support		Frequent
Profile	Description	(TCS)	Arrhythmia (A)	flyer (FF)
1.	Critical cardiogenic shock	Х	X	
2.	Progressive decline on inotropic support	X	X	
3.	Stable but inotrope dependent	X (in hosp)	X	X (if home)
4.	Resting symptoms home on oral			
	therapy		X	Χ
5.	Exertion intolerant		Χ	Χ
6.	Exertion limited		Χ	Χ
7.	Advanced NYHA Class III			
	symptoms		Χ	

SCAI Stages of Shock



©2021 Society for Cardiovascular Angiography and Interventions

UTSouthwestern Medical Center


SCAI Stages of Shock

UTSouthwestern Medical Center

SCAI Stages of Shock

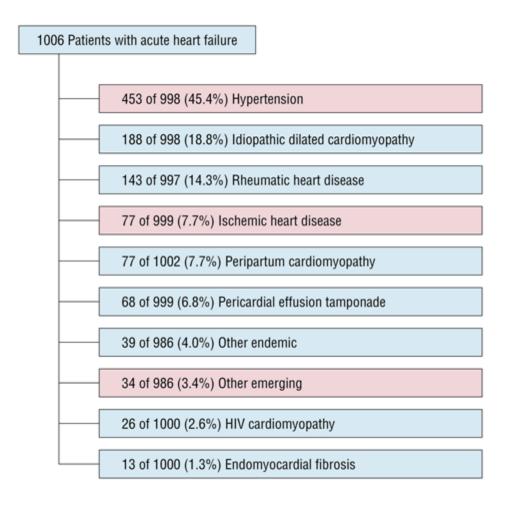
Outline

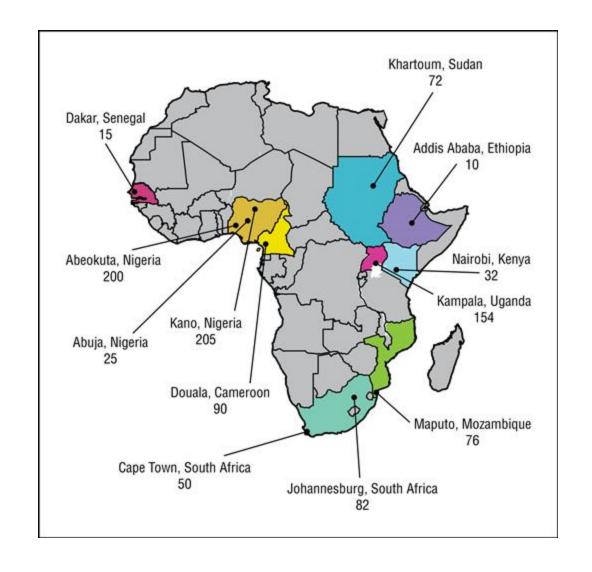
Cardiogenic shock definitions

Cardiogenic shock fundamentals

Scales (SCAI vs INTERMACs)

Demographics & Outcomes

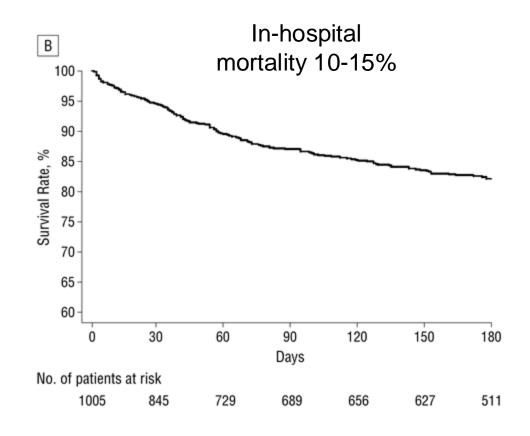

Management



UTSouthwestern

Hospitalized Heart Failure in Africa

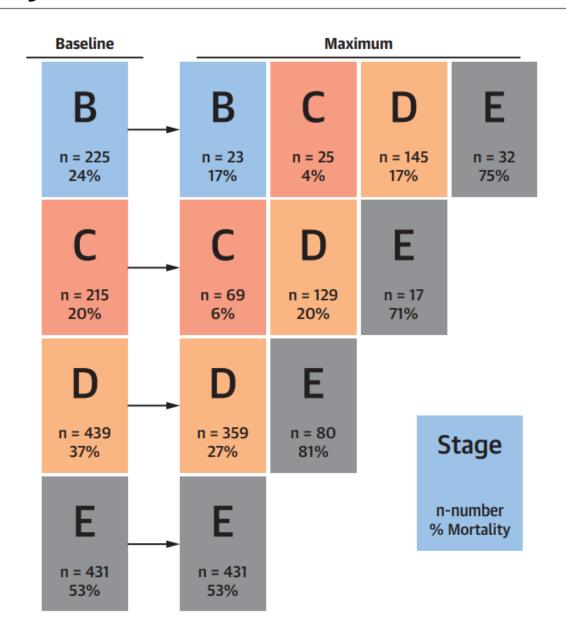
Medical Center

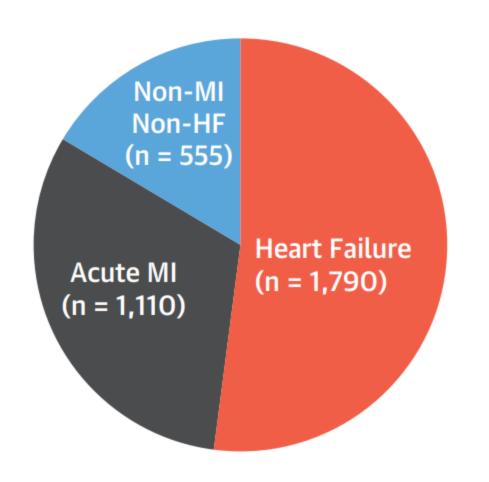


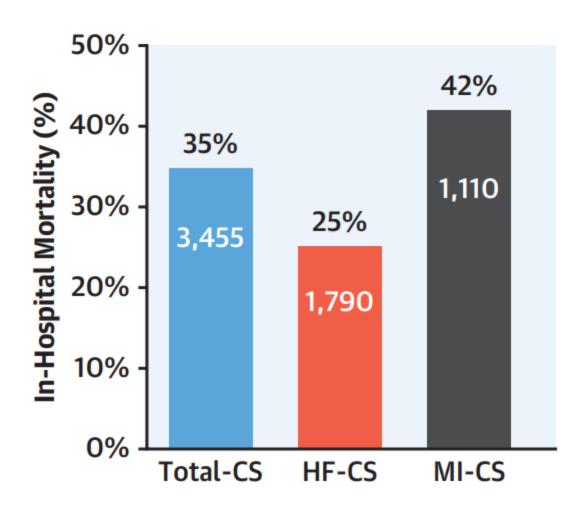
UTSouthwesternMedical Center

Hospitalized Heart Failure in Africa

Table 1. Demographic and Clinical Presentation^a


Characteristic	AII (N=1006)	Men (n=494)	Women (n=511)	<i>P</i> Value
Age, y	,	, ,		
Mean (SD)	52.3 (18.3)	54.0 (16.9)	50.7 (19.5)	.005
Median (IQR)	55.0 (39.0-67.0)	55.0 (43.0-67.0)	53.0 (33.0-67.0)	
Black African, No. (%)	984 (98.5)	486 (98.8)	497 (98.2)	.47
Atrial fibrillation, No. (%)	184 (18.3)	77 (15.7)	107 (21.1)	.03
No. of AHF admissions in last 12 mo	(,	(,	(=,	
Mean (SD)	0.37 (0.78)	0.41 (0.77)	0.34 (0.78)	4.5
Median (IQR)	0 (0-0)	0 (0-1)	0 (0-0)	.15
Hyperlipidemia, No. (%) ^b	90 (9.2)	52 (10.8)	38 (7.6)	.09
History of smoking, No. (%)	98 (9.8)	85 (17.3)	13 (2.6)	<.001
History of hypertension, No. (%)	556 (55.5)	296 (60.0)	259 (51.0)	.004
History of diabetes mellitus, No. (%)	114 (11.4)	58 (11.8)	56 (11.0)	.68
Body mass index ^c	, ,	,	,	
Mean (SD)	25.2 (9.0)	24.7 (4.9)	25.7 (11.6)	00
Median (IQR)	24.0 (20.9-28.1)	24.0 (21.2-27.6)	23.9 (20.5-28.6)	.08
Systolic blood pressure, mm Hg	,	,	` -	
Mean (SD)	130.4 (33.5)	132.4 (33.7)	128.4 (33.3)	00
Median (IQR)	126.5 (106.0-150.0)	130.0 (110.0-151.0)	120.0 (102.0-150.0)	.06
Diastolic blood pressure, mm Hg	,	•	`	
Mean (SD)	84.3 (20.9)	85.5 (21.2)	83.2 (20.7)	00
Median (IQR)	80.0 (70.0-100.0)	82.0 (70.0-100.0)	80.0 (70.0-96.0)	.08
Heart rate, bpm			`	
Mean (SD)	103.7 (21.6)	101.6 (21.4)	105.7 (21.6)	000
Median (IQR)	104.0 (90.0-116.0)	100.0 (88.0-112.0)	108.0 (90.0-120.0)	.003
LVEF, %			· -	
Mean (SD)	39.5 (16.5)	37.8 (16.2)	41.1 (16.6)	.002
Median (IQR)	38.0 (27.0-50.0)	37.0 (25.0-112.0)	40.0 (28.4-53.0)	.002


Management – Dynamic Process



Demographics – CSWR

		Sh	Shock Cause		
	Overall $(N=3,455)$	MI (n = 1,110)	HF (n = 1,790)		
Nonsurvivors	1,055 (30.5)	449 (40.5)	441 (24.6)		
Male	2,436 (70.5)	775 (69.8)	1,296 (72.4)		
Race					
White	2,043 (59.1)	636 (57.3)	1,043 (58.3)		
Black	291 (8.4)	42 (3.8)	210 (11.7)		
Asian	111 (3.2)	53 (4.8)	38 (2.1)		
Other	120 (3.5)	23 (2.1)	73 (4.1)		
Medical history					
HTN	1,872 (54.2)	721 (65.0)	914 (51.1)		
DM	1,245 (36.0)	482 (43.4)	631 (35.3)		
Atrial fibrillation/flutter	898 (26.0)	125 (11.3)	681 (38.0)		
CKD, any stage	538 (15.6)	106 (9.6)	391 (21.8)		
PVD	236 (6.8)	86 (7.8)	116 (6.5)		
COPD	380 (11.0)	104 (9.4)	232 (13.0)		
CVA/TIA	409 (11.8)	123 (11.1)	249 (13.9)		
Valvular disease	654 (18.9)	80 (7.2)	475 (26.5)		
PCI	673 (19.5)	297 (26.8)	308 (17.2)		
CABG	369 (10.7)	92 (8.3)	217 (12.1)		
ICD	763 (22.1)	44 (4.0)	665 (37.2)		
OHCA	293 (8.5)	147 (13.2)	103 (5.8)		

Kapur et al. Cardiogenic Shock. JACC 2022.

Demographics – CSWR

		Sh	ock Cause
	Overall (N = 3,455)	MI (n = 1,110)	HF (n = 1,790)
Demographics			
Age, y	$61.6 \pm 14.6 \ (3,450)$	$65.6 \pm 12.5 (1,109)$	$60.3 \pm 14.5 (1,790)$
Weight, kg	84.4 [71.0-100.6] (1,883)	82.6 [71.5-98.9] (593)	85.0 [70.8-102.1] (1,051)
BMI, kg/m ²	28.4 [24.4-33.1] (1,872)	28.2 [24.6-32.3] (588)	28.4 [24.0-33.2] (1,047)
Metabolic			
ALT, /L	46.0 [22.0-141.0] (2,443)	64.0 [29.0-153.0] (858)	35.0 [19.0-114.0] (1,268)
BUN, mg/dL	27.0 [19.0-43.0] (2,960)	23.0 [17.0-35.0] (1,017)	32.0 [21.0-48.0] (1,518)
Lactate, mmol/L	2.6 [1.5-5.7] (1,942)	3.0 [1.7-6.3] (703)	2.2 [1.4-4.5] (986)
HCO3, mEq/L	22.0 [18.0-26.0] (2,147)	20.0 [17.0-23.0] (819)	24.0 [20.0-27.0] (1,020)
SCr, mg/dL	1.5 [1.1-2.1] (3,232)	1.3 [1.0-1.9] (1,050)	1.6 [1.2-2.3] (1,750)
рН	7.3 [7.2-7.4] (1,541)	7.3 [7.2-7.4] (652)	7.4 [7.3-7.4] (634)

Demographics – CSWR

		Shoo	ck Cause
	Overall (N = 3,455)	MI (n = 1,110)	HF (n = 1,790)
Hemodynamic			
EF, %	22.5 [15.0-37.0] (2,490)	27.5 [17.5-40.0] (803)	20.0 [14.0-30.0] (1,379)
RAP, mm Hg	14.0 [9.0-18.0] (1,261)	14.0 [10.0-17.0] (403)	14.0 [9.0-18.0] (724)
PCWP, mm Hg	$24.4 \pm 8.8 \ (912)$	$24.0 \pm 9.2 \ (300)$	$24.8 \pm 8.7 \ (517)$
Mean PAP, mm Hg	31.7 [25.7-38.7] (1,312)	29.0 [23.3-35.0] (439)	34.3 [27.3-41.0] (733)
CO, L/min	3.6 [2.9-4.4] (1,243)	3.6 [2.9-4.6] (412)	3.6 [2.8-4.3] (714)
CPO, W	0.6 [0.5-0.8] (1,177)	0.6 [0.5-0.8] (396)	0.6 [0.5-0.7] (667)
Heart rate, beats/min	91.0 [76.0-107.0] (3,213)	90.0 [74.0-107.0] (1,015)	92.0 [77.0-108.0] (1,724)
Cardiac index	1.9 [1.5-2.2] (1,251)	1.9 [1.6-2.3] (415)	1.8 [1.4-2.1] (722)
MAP, mm Hg	$80.5 \pm 18.0 \ (3,272)$	81.5 \pm 20.5 (1,053)	$80.1 \pm 16.0 \ (1,737)$
SBP, mm Hg	106.9 ± 24.4 (3,185)	109.6 \pm 28.4 (1,002)	104.9 \pm 20.9 (1,714)
PAPi	1.3 [0.8-2.0] (188)	1.4 [1.0-2.1] (80)	1.4 [0.8-2.1] (86)

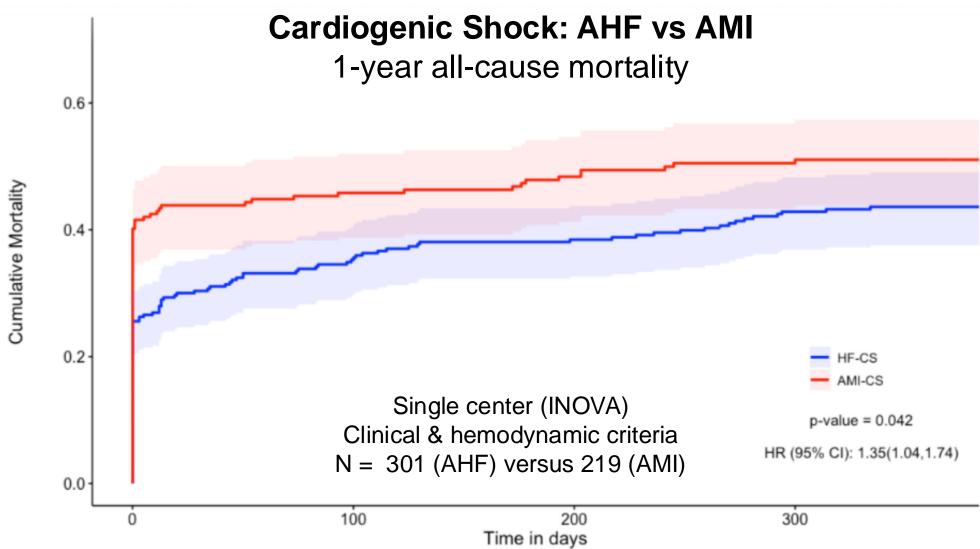
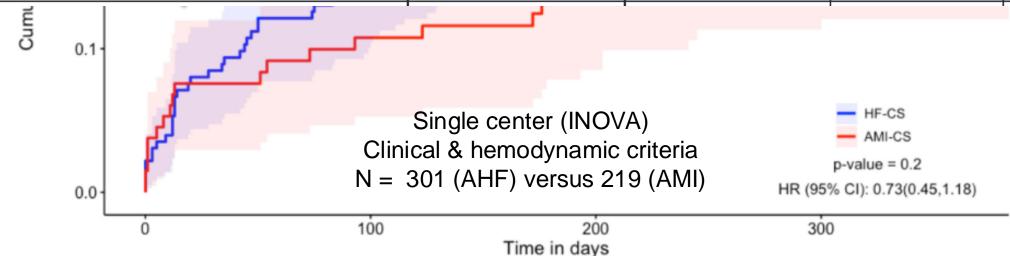

Demographics – Cardiogenic Shock

Table 2. In-Hospital Device Therapy and Outcomes in Cardiogenic Shock Patients (Table view)

Parameter	AMI-CS; N=219	HF-CS; N=301	Total; N=520	P value
AMI-CS management				
Percutaneous revascularization	150 (68.5%)	N/A	N/A	
Culprit/single-vessel	123 (82.0%)	N/A	N/A	
Multivessel	27 (18.0%)	N/A	N/A	
Surgical revascularization	30 (13.7%)	N/A	N/A	
Medical management	39 (17.8%)	N/A	N/A	
MCS utilization	167 (76.3%)	105 (34.9%)	272 (52.3%)	<0.001
IABP	98 (44.8%)	34 (11.3%)	132 (25.4%)	<0.001
Escalation from IABP	40 (40.8%)	10 (29.4%)	50 (37.9%)	0.31
pVAD only	79 (36.1%)	43 (14.3%)	122 (23.5%)	<0.001
VA-ECMO only	15 (6.9%)	19 (6.3%)	34 (6.5%)	0.86
pVAD+VA-ECMO	33 (15.1%)	22 (7.3%)	55 (10.6%)	0.156
Impella 5.0+VA-ECMO	0 (0.00%)	2 (9.1%)	2 (3.6%)	
Impella CP+VA-ECMO	33 (100%)	20 (90.9%)	53 (96.4%)	

Outcomes – Cardiogenic Shock


UTSouthwesternMedical Center

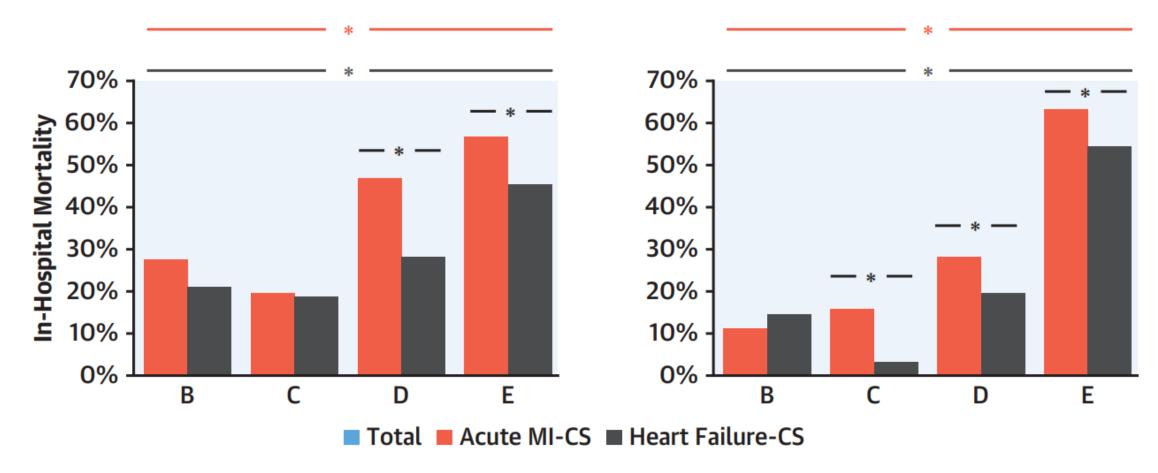
Outcomes – Cardiogenic Shock

Cardiogenic Shock: AHF vs AMI

1-year all-cause mortality (conditional)

Parameter	AMI-CS; N= 133	HF-CS; N= 229	Total; N=362	<i>P</i> value
30-d mortality*,†	10 (7.7%)	14 (6.4%)	24 (6.9%)	0.67
6-mo mortality*†	18 (14.4%)	36 (16.8%)	54 (15.9%)	0.65
1-y mortality*†	24 (19.7%)	51 (23.5%)	75 (22.1%)	0.41

Total CS (MI + HF)


Number of Devices

	% Mortality (n-number)	0	1	2	3	4+
	0	7.4% (95)	12.6% (206)	26.1% (23)	N/A	N/A
Orugs	1	11.0% (620)	19.3% (462)	29.4% (102)	21.4% (14)	N/A
Number of Drugs	2	37.6% (173)	31.5% (365)	40.3% (149)	40.9% (22)	44.4% (9)
Num	3	59.1% (93)	44.9% (225)	50.9% (169)	59.2% (49)	40.0% (5)
	4+	85.1% (47)	60.9% (161)	68.0% (122)	79.6% (44)	66.7% (12)

In-hospital mortality by initial (left) and maximal (right) SCAI shock stage

Outline

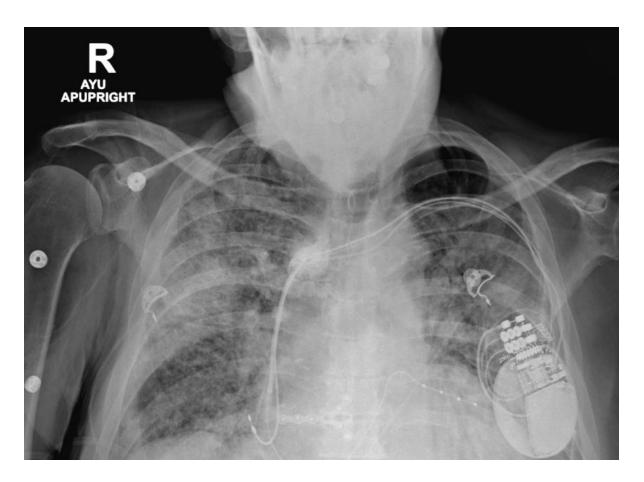
Cardiogenic shock definitions

Cardiogenic shock fundamentals

Scales (SCAI vs INTERMACs)

Demographics & Outcomes

Management

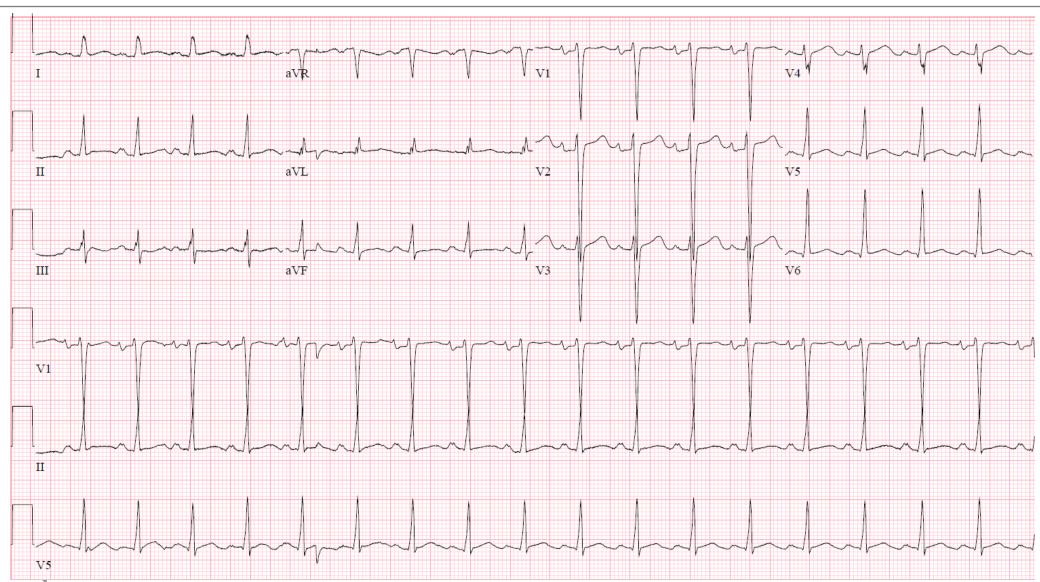


Case 1 -

A 45-year-old man with a history of CAD with myocardial infarction presents with several days of lower extremity swelling, shortness of breath, chest pain and vomiting.

At rest, he appears unwell, tachypneic (RR >20 breaths/minute), tachycardic (130 bpm) and hypotensive (BP 75/50). 3+ lower extremity swelling and elevated JVP.

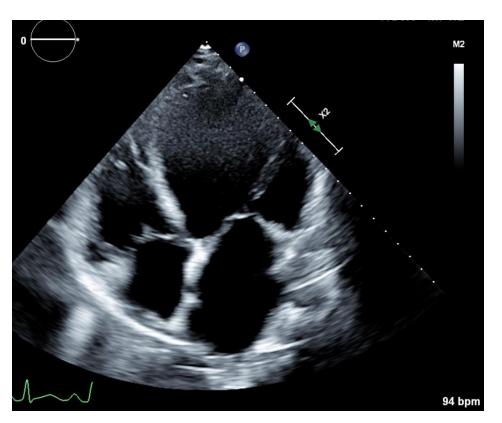
His labs are notable for a lactic acidosis, acute kidney injury and elevated liver function tests.



UTSouthwestern

Medical Center

Case 1 – ECG



Case 1 –

Point of care cardiac ultrasound LVEF ~15%, severely dilated (7.5 cm LVEDD) Aortic and mitral valve open well

Case 1 –

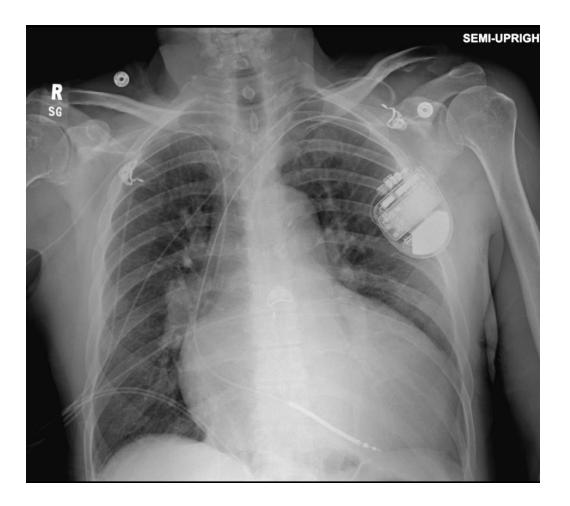
Diagnosis – Dilated cardiomyopathy with cardiogenic shock

Immediate treatment

IV diuretics

Start IV dobutamine

Add norepinephrine or vasopressin if MAP is <65 mmHg

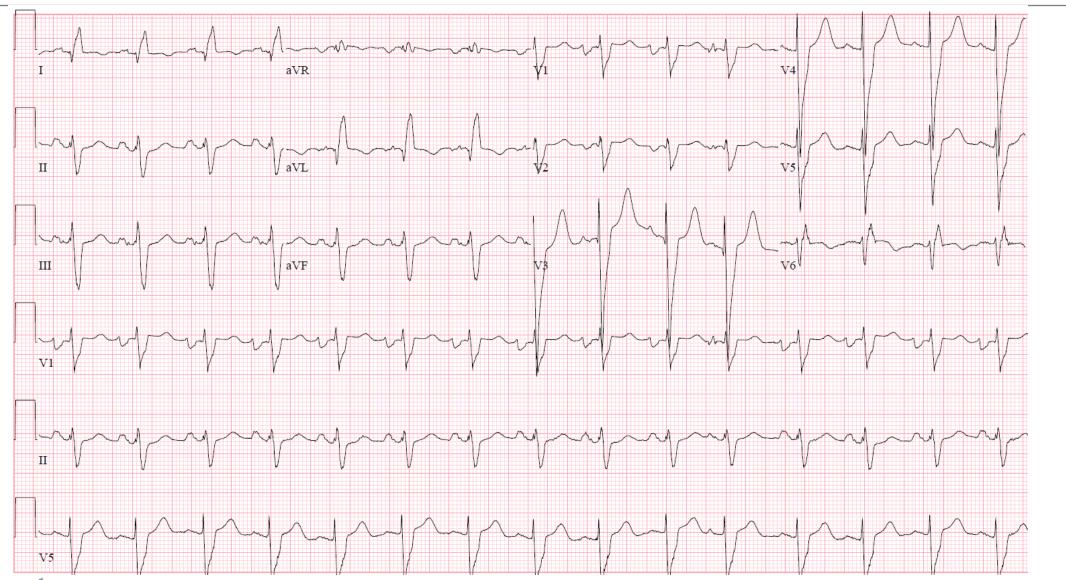


Cases 2 -

A 65-year-old man with a history of hypertension presents with several weeks of lower extremity swelling, shortness of breath, chest pain and abdominal pain.

At rest, he appears restless, tachypneic (RR >20 breaths/minute), tachycardic (110 bpm) and normotensive (BP 175/130). +S4, lower extremity swelling and elevated JVP.

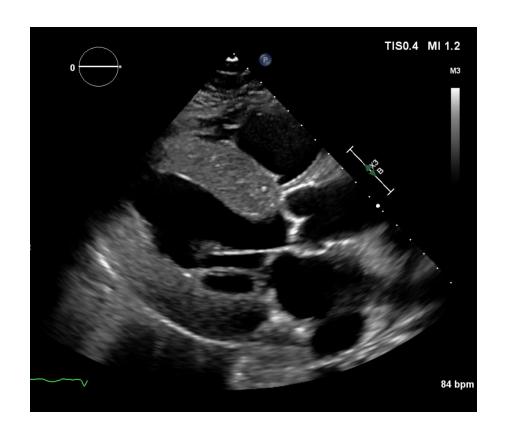
His labs are notable for an acute kidney injury and elevated liver function tests.

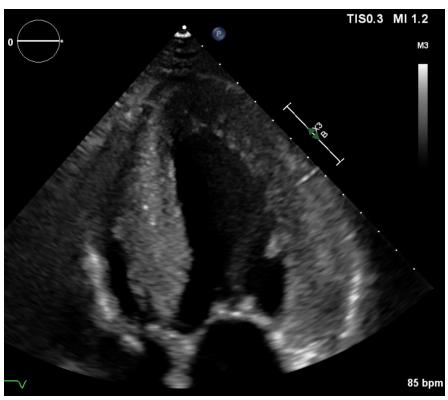


UTSouthwestern

Medical Center

Case 2 – ECG





Point of care cardiac ultrasound

LVEF ~30%, severe concentric hypertrophy (thickening) Aortic and mitral valve open well

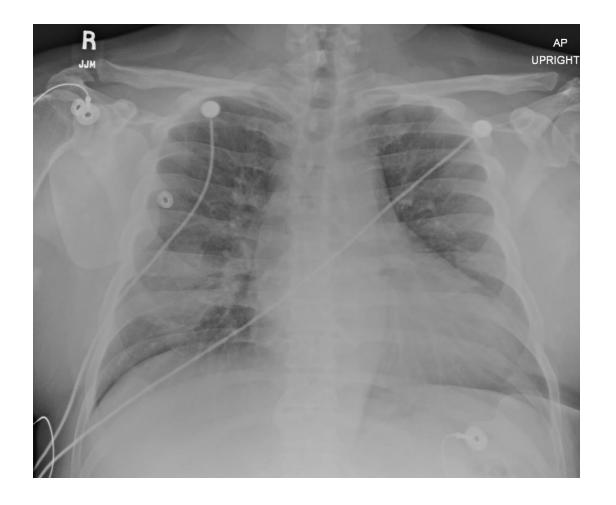
Case 2 -

Diagnosis – Restrictive cardiomyopathy (severe thickening) Related to hypertension or hATTR

Immediate treatment

IV diuretics

Medications to reduce blood pressure (ACE/ARB)

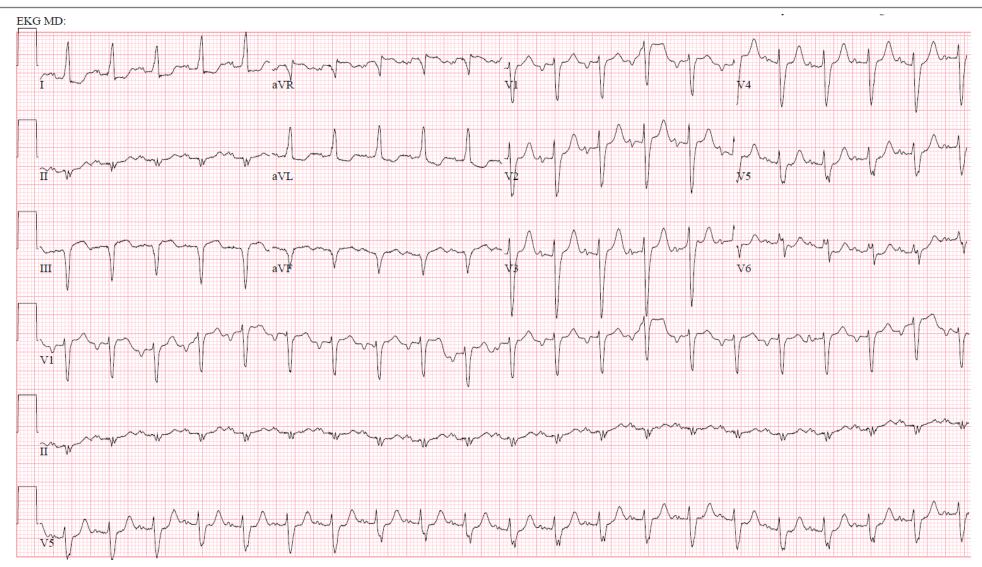


Case 3 –

A 55-year-old man with a history of hypertension and smoking presents with 2 hours of chest pain, shortness of breath, and nausea.

At rest, he appears uncomfortable with normal sinus rhythm (HR 80 BPM), and hypotensive (BP 75/30). +Rales, no lower extremity swelling and normal JVP.

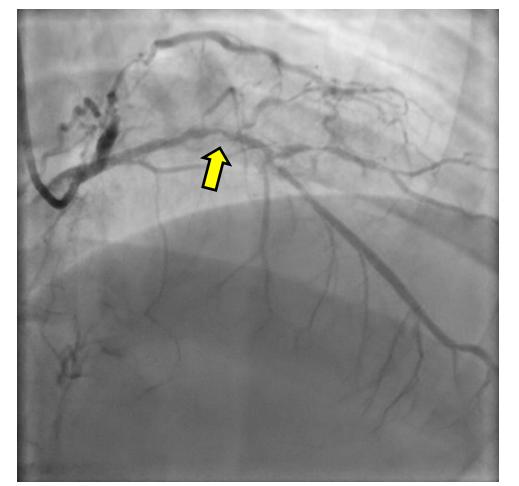
His labs are pending.

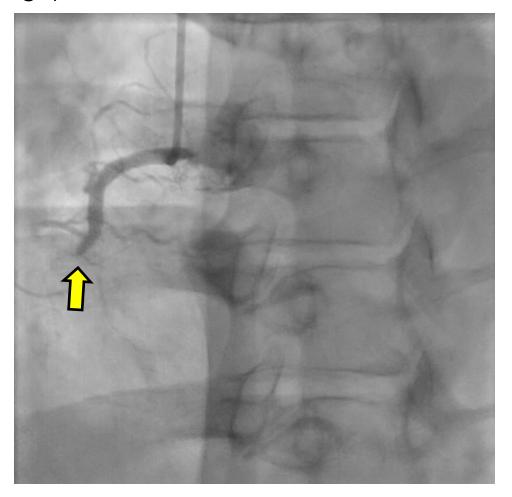


UTSouthwestern

Medical Center

Case 3 – ECG





Case 3 – Coronary angiography

LAD with severe stenosis in mid portion (left image) Right coronary artery totally occluded (right image)

Case 3 -

Diagnosis – ST elevation myocardial infarction

Immediate treatment

Emergent reperfusion – left heart catheterization or tPA

IV diuretics (rales)

Norepinephrine or vasopressin if MAP <65 mmHg

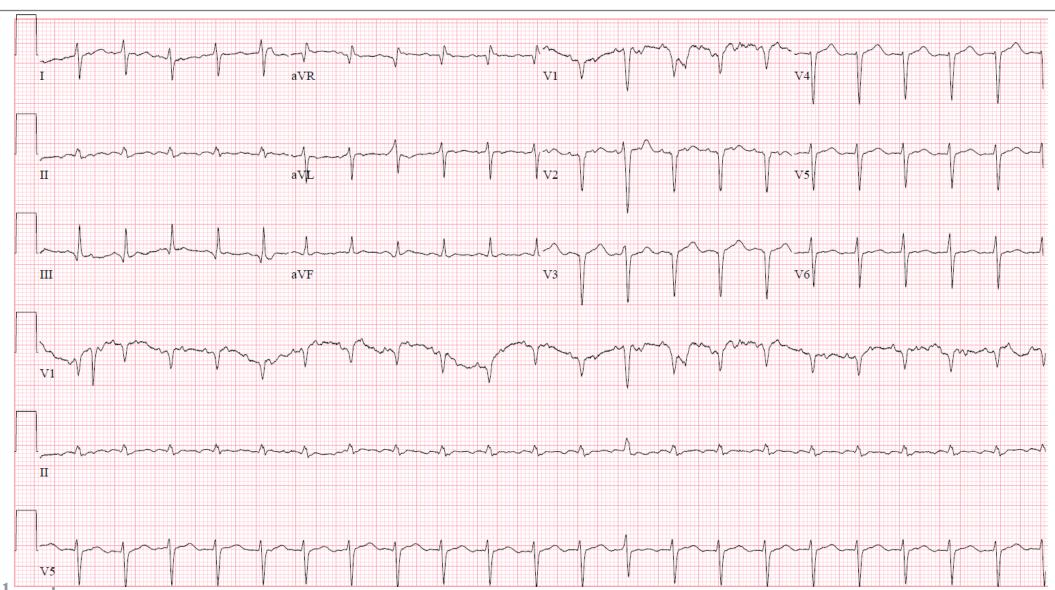
If shock post reperfusion, dobutamine or intra-aortic balloon pump

Case 4 -

A 60-year-old woman with a history of hypertension presents with 2 months of chest pain, shortness of breath, and nausea.

At rest, she appears uncomfortable with atrial flutter at 2:1 (HR 145 BPM), and normotensive (BP 115/95). +Rales, 2+ lower extremity swelling and elevated JVP.

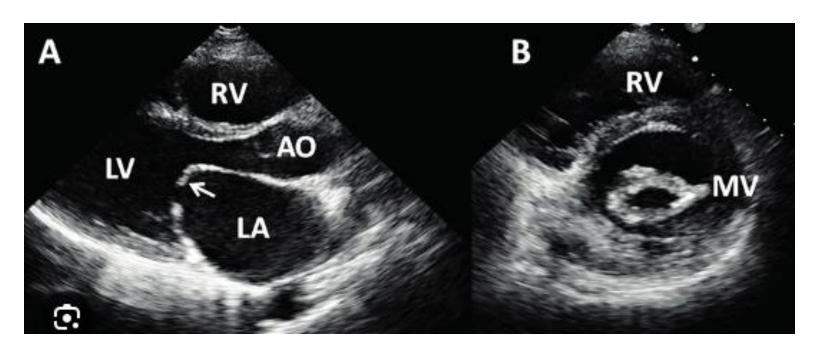
His labs are notable for lactate of 2.5, acute liver injury and elevated creatinine (~2.5).

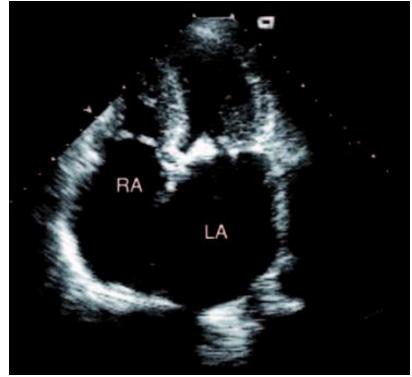


UTSouthwestern

Medical Center

Case 4 – ECG





Case 4 –

Point of care cardiac ultrasound

LVEF ~50%, concentric hypertrophy (thickening)
Aortic valve opens well. Mitral valve is heavily calcified with small opening
Massive left atrium

Case 4 -

Diagnosis – Severe mitral stenosis with cardiogenic shock (rheumatic valve)

Immediate treatment

IV diuretics

Beta-blockers to slow heart rate

Amiodarone to slow heart rate & rhythm control (ideally <70 bpm)

Therapeutic anticoagulation (for possible cardioversion)

Consider cardioversion

Outline

Cardiogenic shock definitions

Cardiogenic shock fundamentals

Scales (SCAI vs INTERMACs)

Demographics & Outcomes

Management

Summary

Diagnosis of cardiogenic shock can be tricky

Relying on lactate is a sometimes fool's errand (it can be helpful)

Recipe to shock management highly dependent on the patient

Urgent correct treatment (within 2 hours) is needed

ACS shock carriers a higher mortality relative to ADHF

In-patient shock mortality ~40-50%

Question 1

A 35-year-old woman with a history of moderate-to-severe mitral stenosis presents with worsening shortness of breath, sinus tachycardia (HR 140 bpm), and a blood pressure of 150/80 mmHg. She is noted to have an acute kidney injury (creatinine 1.0 --> 2.5), elevated lactate and elevated liver function tests (previously normal). An echocardiogram is notable for normal right and left ventricular systolic function with significant mitral stenosis. The *most appropriate immediate management* of her cardiogenic shock includes:

- A. Intravenous diuretics and therapeutic anticoagulation
- B. Intravenous diuretics and ACE-inhibitor administration
- C. Intravenous diuretics and hydralazine administration
- D. Intravenous diuretics and beta-blocker administration
- E. ACE-inhibitor administration and beta-blocker administration

Question 2

A 45-year-old man with a history of CAD with myocardial infarction and ischemic cardiomyopathy presents with several days of lower extremity swelling, shortness of breath, chest pain and vomiting. At rest, he appears unwell, tachypneic (respiratory rate >20 breaths/minute), tachycardic (130 bpm) and hypotensive (BP 75/50). His labs are notable for a lactic acidosis, acute kidney injury and elevated liver function tests. A point of care cardiac ultrasound is notable for a left ventricular fraction <20%. An ECG does not demonstrate ST elevation or depression. The *most appropriate immediate management* of her cardiogenic shock includes:

- A. Initiation of dobutamine and beta-blocker administration
- B. Initiation of dobutamine and intravenous diuretics
- C. Initiation of milrinone and intravenous diuretics
- D. Intravenous diuretics and ACE-inhibitor administration
- E. Intravenous diuretics and beta-blocker administration

Questions or Comments?!